Patents by Inventor Jeremy A. Landt
Jeremy A. Landt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150293217Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse compression radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulse compression radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.Type: ApplicationFiled: June 10, 2014Publication date: October 15, 2015Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
-
Patent number: 8786488Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse compression radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulse compression radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.Type: GrantFiled: June 17, 2011Date of Patent: July 22, 2014Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
-
Patent number: 8779968Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulsed radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.Type: GrantFiled: April 27, 2011Date of Patent: July 15, 2014Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Jeremy Landt, Joseph H. Kao, Michael P. Gonzales
-
Patent number: 8742975Abstract: A system for measuring range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated signal compression radar system. The reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The signal compression radar system transmits signals coordinated by the backscatter state of the tag and creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar signals between the radar system and the RFID tag. The radar may use signals typical of pulse compression radar systems such as chirp modulation or Orthogonal Frequency Domain Modulation (OFDM), either pulsed or semi-continuous.Type: GrantFiled: November 15, 2011Date of Patent: June 3, 2014Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
-
Patent number: 8432255Abstract: One or more secondary data channels are added to existing RFID protocols within the existing bandwidth, data clock rate and message frame times of the protocols. An RFID system is described having at least one reader and at least one tag includes communication between the reader and the tag using a radio frequency carrier signal modulated by a modulation signal to provide a modulated carrier signal conveying digital data in either direction. The modulation signal includes a first encoded modulation signal perturbed by encoded perturbations, the first encoded modulation signal being produced from a first data string. The encoded perturbations are produced from a second data string. The modulation signal modulates the radio frequency signals to transfer data representative of the first and second data strings simultaneously between the reader and the tag. The modulation signal modulates the amplitude, phase, frequency or any combination of the radio frequency carrier signals.Type: GrantFiled: April 9, 2009Date of Patent: April 30, 2013Assignee: Amtech Systems, LLCInventors: Jeremy Landt, Michael George Melville
-
Patent number: 8188908Abstract: Distance to a modulated backscatter tag is measured with a RFID reader that measures changes in phase with frequency of modulated backscattered RF signals. Measured distances are linked to a specific tag. The effects of other sources of reflected and interfering signals are mitigated. The techniques eliminate the need for high RF bandwidth used in time-of-flight methods, and may be used with linear, limiting or other types of amplifiers in the reader receiver. Unambiguous distance to a tag may be found using the derivative of phase with RF frequency of the modulated signal backscattered by a tag. The distance to a tag can be measured with an accuracy on the order of a centimeter. The techniques utilize the characteristics of cooperative backscatter tags (transponders, labels, etc.). New readers implement the techniques which may use unmodified tags.Type: GrantFiled: July 21, 2010Date of Patent: May 29, 2012Assignee: Amtech Systems, LLCInventor: Jeremy A. Landt
-
Publication number: 20120127021Abstract: A system for measuring range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated signal compression radar system. The reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The signal compression radar system transmits signals coordinated by the backscatter state of the tag and creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar signals between the radar system and the RFID tag. The radar may use signals typical of pulse compression radar systems such as chirp modulation or Orthogonal Frequency Domain Modulation (OFDM), either pulsed or semi-continuous.Type: ApplicationFiled: November 15, 2011Publication date: May 24, 2012Applicant: TC LICENSE LTD.Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
-
Publication number: 20110309969Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse compression radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulse compression radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.Type: ApplicationFiled: June 17, 2011Publication date: December 22, 2011Applicant: TC LICENSE LTD.Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
-
Publication number: 20110260910Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulsed radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.Type: ApplicationFiled: April 27, 2011Publication date: October 27, 2011Applicant: TC LICENSE LTD.Inventors: Kelly Gravelle, Jeremy Landt, Joseph H. Kao, Michael P. Gonzales
-
Publication number: 20110187600Abstract: Distance to a modulated backscatter tag is measured with a RFID reader that measures changes in phase with frequency of modulated backscattered RF signals. Measured distances are linked to a specific tag. The effects of other sources of reflected and interfering signals are mitigated. The techniques eliminate the need for high RF bandwidth used in time-of-flight methods, and may be used with linear, limiting or other types of amplifiers in the reader receiver. Unambiguous distance to a tag may be found using the derivative of phase with RF frequency of the modulated signal backscattered by a tag. The distance to a tag can be measured with an accuracy on the order of a centimeter. The techniques utilize the characteristics of cooperative backscatter tags (transponders, labels, etc.). New readers implement the techniques which may use unmodified tags.Type: ApplicationFiled: July 21, 2010Publication date: August 4, 2011Applicant: TC LICENSE LTD.Inventor: Jeremy A. Landt
-
Publication number: 20100259363Abstract: One or more secondary data channels are added to existing RFID protocols within the existing bandwidth, data clock rate and message frame times of the protocols. An RFID system is described having at least one reader and at least one tag includes communication between the reader and the tag using a radio frequency carrier signal modulated by a modulation signal to provide a modulated carrier signal conveying digital data in either direction. The modulation signal includes a first encoded modulation signal perturbed by encoded perturbations, the first encoded modulation signal being produced from a first data string. The encoded perturbations are produced from a second data string. The modulation signal modulates the radio frequency signals to transfer data representative of the first and second data strings simultaneously between the reader and the tag. The modulation signal modulates the amplitude, phase, frequency or any combination of the radio frequency carrier signals.Type: ApplicationFiled: April 9, 2009Publication date: October 14, 2010Applicant: TC License, Ltd.Inventors: Jeremy Landt, Michael George Melville
-
Patent number: 7791481Abstract: A radio frequency identification (RFID) device is arranged for use with a remote interrogator unit. The RFID device comprises an integrated circuit configured to send, in response to a signal received from the remote interrogator unit or automatically, a responsive signal which includes identification information. A communication antenna is electrically coupled to the integrated circuit and is provided for wireless communication with the remote interrogator unit. At least one photovoltaic cell is provided for converting radiation into electrical energy and providing power to the integrated circuit. The photocell may be designed to form all or part of the RF antenna of the RFID device.Type: GrantFiled: January 21, 2008Date of Patent: September 7, 2010Assignee: TC License Ltd.Inventors: Jeremy Landt, Matthew Burnett, Tai Youn, Kelly Gravelle, Charles A Johnson
-
Publication number: 20080174436Abstract: A radio frequency identification (RFID) device is arranged for use with a remote interrogator unit. The RFID device comprises an integrated circuit configured to send, in response to a signal received from the remote interrogator unit or automatically, a responsive signal which includes identification information. A communication antenna is electrically coupled to the integrated circuit and is provided for wireless communication with the remote interrogator unit. At least one photovoltaic cell is provided for converting radiation into electrical energy and providing power to the integrated circuit. The photocell may be designed to form all or part of the RF antenna of the RFID device.Type: ApplicationFiled: January 21, 2008Publication date: July 24, 2008Inventors: Jeremy Landt, Matthew Burnett, Tai Youn, Kelly Gravelle, Charles A. Johnson
-
Patent number: 6677852Abstract: The system and method for automatically controlling or configuring, a device, such as an RFID Reader, reads a master control tag to upload sets of instructions from the tag to memory resident in the reader. Thereafter, the reader may read a control tag to select one or more sets of instructions stored in memory. The reader may thus be readily programmed without the need for physically connecting the reader to a computer, and without employing expensive key pads and display screens.Type: GrantFiled: September 22, 1999Date of Patent: January 13, 2004Assignee: Intermec IP Corp.Inventor: Jeremy A. Landt
-
Patent number: 6600443Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.Type: GrantFiled: October 18, 2002Date of Patent: July 29, 2003Assignee: TC (Bermuda) License, Ltd.Inventor: Jeremy A. Landt
-
Publication number: 20030058155Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.Type: ApplicationFiled: October 18, 2002Publication date: March 27, 2003Inventor: Jeremy A. Landt
-
Patent number: 6476756Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.Type: GrantFiled: June 4, 2001Date of Patent: November 5, 2002Assignee: TC (Bermuda) License, Ltd.Inventor: Jeremy A. Landt
-
Publication number: 20020008656Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.Type: ApplicationFiled: June 4, 2001Publication date: January 24, 2002Inventor: Jeremy A. Landt
-
Patent number: 6078251Abstract: An apparatus for object identification including a multi-meter terminal having a plurality of data modules, a triggering device for initiating one of the plurality of data modules to retrieve object identification data from an object, a radio module for downloading the retrieved object identification data to a host and a housing containing the data modules, triggering device and the radio module.Type: GrantFiled: March 27, 1997Date of Patent: June 20, 2000Assignee: Intermec IP CorporationInventors: Jeremy A. Landt, Ivan Berka, Curt L. Carrender, G. Russell Mortenson, Vickram Sondhi, Donald F. Speirs
-
Patent number: 5850187Abstract: A method and apparatus for object identification which includes a portable electronic tag reader having a transceiver capable both of reading identification information from electronic tags and transmitting collected information to a base unit for remote analysis. The system of the present invention utilizes the same transceiver to receive information from the base unit and write data to read/write electronic tags. The system of the present invention includes a transceiver for generating a modulated or unmodulated radio frequency interrogation signal, a receiver for detecting a return signal from an electronic tag and a signal processor for processing the return signal. A modulator within the portable unit combines the identification data with the radio frequency interrogation signal for transmission to a base unit through a wireless local area network. A demodulator within the portable unit extracts data and commands received from a base unit for local processing or transfer to a read/write electronic tag.Type: GrantFiled: March 27, 1996Date of Patent: December 15, 1998Assignee: Amtech CorporationInventors: Curt L. Carrender, Jeremy A. Landt, Donald F. Speirs