Patents by Inventor Jeremy Alfred Theil

Jeremy Alfred Theil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11244916
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second conductive interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: February 8, 2022
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20220020729
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 20, 2022
    Inventors: Guilian GAO, Cyprian Emeka UZOH, Jeremy Alfred THEIL, Belgacem HABA, Rajesh KATKAR
  • Publication number: 20220013456
    Abstract: Representative techniques and devices, including process steps may be employed to mitigate undesired dishing in conductive interconnect structures and erosion of dielectric bonding surfaces. For example, an embedded layer may be added to the dished or eroded surface to eliminate unwanted dishing or voids and to form a planar bonding surface. Additional techniques and devices, including process steps may be employed to form desired openings in conductive interconnect structures, where the openings can have a predetermined or desired volume relative to the volume of conductive material of the interconnect structures. Each of these techniques, devices, and processes can provide for the use of larger diameter, larger volume, or mixed-sized conductive interconnect structures at the bonding surface of bonded dies and wafers.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Cyprian Emeka Uzoh, Gaius Gillman Fountain, JR., Jeremy Alfred Theil
  • Patent number: 11158573
    Abstract: Representative techniques and devices, including process steps may be employed to mitigate undesired dishing in conductive interconnect structures and erosion of dielectric bonding surfaces. For example, an embedded layer may be added to the dished or eroded surface to eliminate unwanted dishing or voids and to form a planar bonding surface. Additional techniques and devices, including process steps may be employed to form desired openings in conductive interconnect structures, where the openings can have a predetermined or desired volume relative to the volume of conductive material of the interconnect structures. Each of these techniques, devices, and processes can provide for the use of larger diameter, larger volume, or mixed-sized conductive interconnect structures at the bonding surface of bonded dies and wafers.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Cyprian Emeka Uzoh, Gaius Gillman Fountain, Jr., Jeremy Alfred Theil
  • Patent number: 11158606
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 26, 2021
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Guilian Gao, Cyprian Emeka Uzoh, Jeremy Alfred Theil, Belgacem Haba, Rajesh Katkar
  • Publication number: 20210287910
    Abstract: Improved bonding surfaces for microelectronics are provided. An example method of protecting a dielectric surface for direct bonding during a microelectronics fabrication process includes overfilling cavities and trenches in the dielectric surface with a temporary filler that has an approximately equal chemical and mechanical resistance to a chemical-mechanical planarization (CMP) process as the dielectric bonding surface. The CMP process is applied to the temporary filler to flatten the temporary filler down to the dielectric bonding surface. The temporary filler is then removed with an etchant that is selective to the temporary filler, but nonreactive toward the dielectric surface and toward inner surfaces of the cavities and trenches in the dielectric bonding surface. Edges of the cavities remain sharp, which minimizes oxide artifacts, strengthens the direct bond, and reduces the bonding seam.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 16, 2021
    Inventor: Jeremy Alfred Theil
  • Patent number: 11056348
    Abstract: Improved bonding surfaces for microelectronics are provided. An example method of protecting a dielectric surface for direct bonding during a microelectronics fabrication process includes overfilling cavities and trenches in the dielectric surface with a temporary filler that has an approximately equal chemical and mechanical resistance to a chemical-mechanical planarization (CMP) process as the dielectric bonding surface. The CMP process is applied to the temporary filler to flatten the temporary filler down to the dielectric bonding surface. The temporary filler is then removed with an etchant that is selective to the temporary filler, but nonreactive toward the dielectric surface and toward inner surfaces of the cavities and trenches in the dielectric bonding surface. Edges of the cavities remain sharp, which minimizes oxide artifacts, strengthens the direct bond, and reduces the bonding seam.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: July 6, 2021
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventor: Jeremy Alfred Theil
  • Publication number: 20210066233
    Abstract: Representative implementations of techniques and methods include chemical mechanical polishing for hybrid bonding. The disclosed methods include depositing and patterning a dielectric layer on a substrate to form openings in the dielectric layer, depositing a barrier layer over the dielectric layer and within a first portion of the openings, and depositing a conductive structure over the barrier layer and within a second portion of the openings not occupied by the barrier layer, at least a portion of the conductive structure in the second portion of the openings coupled or contacting electrical circuitry within the substrate. Additionally, the conductive structure is polished to reveal portions of the barrier layer deposited over the dielectric layer and not in the second portion of the openings. Further, the barrier layer is polished with a selective polish to reveal a bonding surface on or at the dielectric layer.
    Type: Application
    Filed: November 12, 2020
    Publication date: March 4, 2021
    Inventors: Gaius Gillman Fountain, JR., Chandrasekhar Mandalapu, Cyprian Emeka Uzoh, Jeremy Alfred Theil
  • Publication number: 20200381389
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Inventors: Cyprian Emeka UZOH, Jeremy Alfred THEIL, Liang WANG, Rajesh KATKAR, Guilian GAO, Laura Wills MIRKARIMI
  • Patent number: 10840205
    Abstract: Methods for hybrid bonding include depositing and patterning a dielectric layer on a substrate to form openings in the dielectric layer, depositing a barrier layer over the dielectric layer and within a first portion of the openings, and depositing a conductive structure over the barrier layer and within a second portion of the openings not occupied by the barrier layer, at least a portion of the conductive structure in the second portion of the openings coupled or contacting electrical circuitry within the substrate. The conductive structure is polished to reveal portions of the barrier layer deposited over the dielectric layer and not in the second portion of the openings. Further, the barrier layer is polished with a selective polish to reveal a bonding surface on or at the dielectric layer.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: November 17, 2020
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventors: Gaius Gillman Fountain, Jr., Chandrasekhar Mandalapu, Cyprian Emeka Uzoh, Jeremy Alfred Theil
  • Patent number: 10790262
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 29, 2020
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Liang Wang, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20200126906
    Abstract: Representative techniques and devices, including process steps may be employed to mitigate undesired dishing in conductive interconnect structures and erosion of dielectric bonding surfaces. For example, an embedded layer may be added to the dished or eroded surface to eliminate unwanted dishing or voids and to form a planar bonding surface. Additional techniques and devices, including process steps may be employed to form desired openings in conductive interconnect structures, where the openings can have a predetermined or desired volume relative to the volume of conductive material of the interconnect structures. Each of these techniques, devices, and processes can provide for the use of larger diameter, larger volume, or mixed-sized conductive interconnect structures at the bonding surface of bonded dies and wafers.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 23, 2020
    Inventors: Cyprian Emeka UZOH, Gaius Gillman FOUNTAIN, JR., Jeremy Alfred THEIL
  • Publication number: 20200051937
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second conductive interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventors: Cyprian Emeka UZOH, Jeremy Alfred THEIL, Rajesh KATKAR, Guilian GAO, Laura Wills MIRKARIMI
  • Publication number: 20200013754
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 9, 2020
    Inventors: Guilian GAO, Cyprian Emeka UZOH, Jeremy Alfred THEIL, Belgacem HABA, Rajesh KATKAR
  • Publication number: 20190319007
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 17, 2019
    Inventors: Cyprian Emeka UZOH, Jeremy Alfred THEIL, Liang WANG, Rajesh KATKAR, Guilian GAO, Laura Wills MIRKARIMI
  • Publication number: 20190311911
    Abstract: Improved bonding surfaces for microelectronics are provided. An example method of protecting a dielectric surface for direct bonding during a microelectronics fabrication process includes overfilling cavities and trenches in the dielectric surface with a temporary filler that has an approximately equal chemical and mechanical resistance to a chemical-mechanical planarization (CMP) process as the dielectric bonding surface. The CMP process is applied to the temporary filler to flatten the temporary filler down to the dielectric bonding surface. The temporary filler is then removed with an etchant that is selective to the temporary filler, but nonreactive toward the dielectric surface and toward inner surfaces of the cavities and trenches in the dielectric bonding surface. Edges of the cavities remain sharp, which minimizes oxide artifacts, strengthens the direct bond, and reduces the bonding seam.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 10, 2019
    Inventor: Jeremy Alfred THEIL
  • Publication number: 20190096842
    Abstract: Representative implementations of techniques and methods include chemical mechanical polishing for hybrid bonding. The disclosed methods include depositing and patterning a dielectric layer on a substrate to form openings in the dielectric layer, depositing a barrier layer over the dielectric layer and within a first portion of the openings, and depositing a conductive structure over the barrier layer and within a second portion of the openings not occupied by the barrier layer, at least a portion of the conductive structure in the second portion of the openings coupled or contacting electrical circuitry within the substrate. Additionally, the conductive structure is polished to reveal portions of the barrier layer deposited over the dielectric layer and not in the second portion of the openings. Further, the barrier layer is polished with a selective polish to reveal a bonding surface on or at the dielectric layer.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 28, 2019
    Inventors: Gaius Gillman FOUNTAIN, JR., Chandrasekhar MANDALAPU, Cyprian Emeka UZOH, Jeremy Alfred THEIL
  • Patent number: 7152758
    Abstract: A dispense system stores a scented material or materials and is provided with an electrical interface that is compatible with a hand-held device. The dispense system can be connected to the hand-held device and driven with the help of the hand-held device to dispense the scented material. The dispense system can be configured to store different scented materials that can be mixed to create different scents. Logic within the hand-held device supports the mixing and dispensing of the scented materials.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: December 26, 2006
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. ltd.
    Inventors: Ronald Shane Fazzio, Richard Ruby, Kevin Patrick Killeen, Daniel B. Roitman, Jeremy Alfred Theil