Patents by Inventor Jeremy B. Chritz

Jeremy B. Chritz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914758
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: February 27, 2024
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Publication number: 20210200706
    Abstract: Representative embodiments are disclosed for a rapid and highly parallel configuration process for field programmable gate arrays (FPGAs). In a representative method embodiment, using a host processor, a first configuration bit image for an application is stored in a host memory; one of more FPGAs are configured with a communication functionality such as PCIe using a second configuration bit image stored in a nonvolatile memory; a message is transmitted by the host processor to the FPGAs, usually via PCIe lines, with the message comprising a memory address and also a file size of the first configuration bit image in the host memory; using a DMA engine, each FPGA obtains the first configuration bit image from the host memory and is then configured using the first configuration bit image. Primary FPGAs may further transmit the first configuration bit image to additional, secondary FPGAs, such as via JTAG lines, for their configuration.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Robert Trout, Jeremy B. Chritz, Gregory M. Edvenson
  • Patent number: 10990551
    Abstract: Representative embodiments are disclosed for a rapid and highly parallel configuration process for field programmable gate arrays (FPGAs). In a representative method embodiment, using a host processor, a first configuration bit image for an application is stored in a host memory; one of more FPGAs are configured with a communication functionality such as PCIe using a second configuration bit image stored in a nonvolatile memory; a message is transmitted by the host processor to the FPGAs, usually via PCIe lines, with the message comprising a memory address and also a file size of the first configuration bit image in the host memory; using a DMA engine, each FPGA obtains the first configuration bit image from the host memory and is then configured using the first configuration bit image. Primary FPGAs may further transmit the first configuration bit image to additional, secondary FPGAs, such as via JTAG lines, for their configuration.
    Type: Grant
    Filed: May 14, 2017
    Date of Patent: April 27, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Robert Trout, Jeremy B. Chritz, Gregory M. Edvenson
  • Publication number: 20210056237
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Patent number: 10867078
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 15, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Publication number: 20180307866
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Patent number: 10043041
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Grant
    Filed: August 6, 2016
    Date of Patent: August 7, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Publication number: 20170249274
    Abstract: Representative embodiments are disclosed for a rapid and highly parallel configuration process for field programmable gate arrays (FPGAs). In a representative method embodiment, using a host processor, a first configuration bit image for an application is stored in a host memory; one of more FPGAs are configured with a communication functionality such as PCIe using a second configuration bit image stored in a nonvolatile memory; a message is transmitted by the host processor to the FPGAs, usually via PCIe lines, with the message comprising a memory address and also a file size of the first configuration bit image in the host memory; using a DMA engine, each FPGA obtains the first configuration bit image from the host memory and is then configured using the first configuration bit image. Primary FPGAs may further transmit the first configuration bit image to additional, secondary FPGAs, such as via JTAG lines, for their configuration.
    Type: Application
    Filed: May 14, 2017
    Publication date: August 31, 2017
    Inventors: Robert Trout, Jeremy B. Chritz, Gregory M. Edvenson
  • Patent number: 9658977
    Abstract: Representative embodiments are disclosed for a rapid and highly parallel configuration process for field programmable gate arrays (FPGAs). In a representative method embodiment, using a host processor, a first configuration bit image for an application is stored in a host memory; one of more FPGAs are configured with a communication functionality such as PCIe using a second configuration bit image stored in a nonvolatile memory; a message is transmitted by the host processor to the FPGAs, usually via PCIe lines, with the message comprising a memory address and also a file size of the first configuration bit image in the host memory; using a DMA engine, each FPGA obtains the first configuration bit image from the host memory and is then configured using the first configuration bit image. Primary FPGAs may further transmit the first configuration bit image to additional, secondary FPGAs, such as via JTAG lines, for their configuration.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: May 23, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Robert Trout, Jeremy B. Chritz, Gregory M. Edvenson
  • Publication number: 20160342815
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Application
    Filed: August 6, 2016
    Publication date: November 24, 2016
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Patent number: 9444827
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: September 13, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Publication number: 20150237058
    Abstract: Representative embodiments are disclosed for providing network and system security. A representative apparatus includes an input-output connector coupleable to a data network; a network interface circuit having a communication port; a nonvolatile memory storing a configuration bit image; and a field programmable gate array (“FPGA”) coupled to the network interface circuit through the communication port, the FPGA configurable to appear solely as a communication device to the first network interface circuit, and to bidirectionally monitor all data packets transferred between the input-output connector and the first network interface circuit and any coupled host computing system. In another embodiment, the FPGA is further configurable for only a partial implementation of a communication protocol, such as a PCIe data link and/or physical layers. The FPGA may also monitor host memory and provide encryption and decryption functionality.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 20, 2015
    Inventors: Jeremy B. Chritz, Graham G. Schwinn
  • Publication number: 20150143003
    Abstract: Representative embodiments are disclosed for a rapid and highly parallel configuration process for field programmable gate arrays (FPGAs). In a representative method embodiment, using a host processor, a first configuration bit image for an application is stored in a host memory; one of more FPGAs are configured with a communication functionality such as PCIe using a second configuration bit image stored in a nonvolatile memory; a message is transmitted by the host processor to the FPGAs, usually via PCIe lines, with the message comprising a memory address and also a file size of the first configuration bit image in the host memory; using a DMA engine, each FPGA obtains the first configuration bit image from the host memory and is then configured using the first configuration bit image. Primary FPGAs may further transmit the first configuration bit image to additional, secondary FPGAs, such as via JTAG lines, for their configuration.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Robert Trout, Jeremy B. Chritz, Gregory M. Edvenson