Patents by Inventor Jeremy Christopher Jordan

Jeremy Christopher Jordan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220104722
    Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one B0 magnet to produce a magnetic field to contribute to a B0 magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Applicant: Hyperfine, Inc.
    Inventors: Anne Michele Nelson, Christopher Thomas McNulty, Jeremy Christopher Jordan, Michael Stephen Poole, Gang Chen
  • Patent number: 11234610
    Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one B0 magnet to produce a magnetic field to contribute to a B0 magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: February 1, 2022
    Assignee: Hyperfine, Inc.
    Inventors: Anne Michele Nelson, Christopher Thomas McNulty, Jeremy Christopher Jordan, Michael Stephen Poole, Gang Chen
  • Publication number: 20210311143
    Abstract: A magnetic resonance imaging (MRI) system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, electromagnetic shielding provided to attenuate at least some electromagnetic noise in an operating environment of the MRI system, and an electrical conductor coupled to the electromagnetic shielding and configured to electrically couple to a patient during imaging of the patient by the MRI system. The magnetics system may include at least one permanent B0 magnet configured to produce a B0 magnetic field for an imaging region of the MRI system. The B0 magnetic field strength may be less than or equal to approximately 0.2 T.
    Type: Application
    Filed: June 11, 2021
    Publication date: October 7, 2021
    Applicant: Hyperfine, Inc.
    Inventors: Eddy B. Boskamp, Jeremy Christopher Jordan
  • Publication number: 20210277463
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: May 7, 2021
    Publication date: September 9, 2021
    Applicant: Quantum-Si Invorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. File
  • Publication number: 20210244306
    Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one B0 magnet to produce a magnetic field to contribute to a B0 magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 12, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Anne Michele Nelson, Christopher Thomas McNulty, Jeremy Christopher Jordan, Michael Stephen Poole
  • Publication number: 20210215778
    Abstract: Some aspects comprise a tuning system configured to tune a radio frequency coil for use with a magnetic resonance imaging system comprising a tuning circuit including at least one tuning element configured to affect a frequency at which the radio frequency coil resonates, and a controller configured to set at least one value for the tuning element to cause the radio frequency coil to resonate at approximately a Larmor frequency of the magnetic resonance imaging system determined by the tuning system. Some aspects include a method of automatically tuning a radio frequency coil comprising determining information indicative of a Larmor frequency of the magnetic resonance imaging system, using a controller to automatically set at least one value of a tuning circuit to cause the radio frequency coil to resonate at approximately the Larmor frequency based on the determined information.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Todd Rearick, Jeremy Christopher Jordan, Gregory L. Charvat, Matthew Scot Rosen
  • Patent number: 11061089
    Abstract: A magnetic resonance imaging (MRI) system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, electromagnetic shielding provided to attenuate at least some electromagnetic noise in an operating environment of the MRI system, and an electrical conductor coupled to the electromagnetic shielding and configured to electrically couple to a patient during imaging of the patient by the MRI system. The magnetics system may include at least one permanent B0 magnet configured to produce a B0 magnetic field for an imaging region of the MRI system. The B0 magnetic field strength may be less than or equal to approximately 0.2 T.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: July 13, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Eddy B. Boskamp, Jeremy Christopher Jordan
  • Patent number: 11041922
    Abstract: An apparatus to provide power for operating at least one gradient coil of a magnetic resonance imaging system. According to some aspects, the apparatus comprises a plurality of power terminals configured to supply different voltages of a first polarity, and a linear amplifier configured to provide at least one output to power the at least one gradient coil to produce a magnetic field in accordance with a pulse sequence, the linear amplifier configured to be powered by one or more of the plurality of power terminals, wherein the one or more of the plurality of power terminals powering the linear amplifier is selected based, at least in part, on the at least one output.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: June 22, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: William J. Mileski, Gregory L. Charvat, Jonathan M. Rothberg, Jeremy Christopher Jordan
  • Publication number: 20210165060
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.
    Type: Application
    Filed: January 11, 2021
    Publication date: June 3, 2021
    Applicant: Hyperfine Research, Inc,
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, JR., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 11006851
    Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one B0 magnet to produce a magnetic field to contribute to a B0 magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 18, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Anne Michele Nelson, Christopher Thomas McNulty, Jeremy Christopher Jordan, Michael Stephen Poole
  • Patent number: 10996296
    Abstract: Some aspects comprise a tuning system configured to tune a radio frequency coil for use with a magnetic resonance imaging system comprising a tuning circuit including at least one tuning element configured to affect a frequency at which the radio frequency coil resonates, and a controller configured to set at least one value for the tuning element to cause the radio frequency coil to resonate at approximately a Larmor frequency of the magnetic resonance imaging system determined by the tuning system. Some aspects include a method of automatically tuning a radio frequency coil comprising determining information indicative of a Larmor frequency of the magnetic resonance imaging system, using a controller to automatically set at least one value of a tuning circuit to cause the radio frequency coil to resonate at approximately the Larmor frequency based on the determined information.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: May 4, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Todd Rearick, Jeremy Christopher Jordan, Gregory L. Charvat, Matthew Scot Rosen
  • Patent number: 10989776
    Abstract: An apparatus to provide power for operating at least one gradient coil of a magnetic resonance imaging system. According to some aspects, the apparatus comprises a plurality of power terminals configured to supply different voltages of a first polarity, and a linear amplifier configured to provide at least one output to power the at least one gradient coil to produce a magnetic field in accordance with a pulse sequence, the linear amplifier configured to be powered by one or more of the plurality of power terminals, wherein the one or more of the plurality of power terminals powering the linear amplifier is selected based, at least in part, on the at least one output.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 27, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: William J. Mileski, Gregory L. Charvat, Jonathan M. Rothberg, Jeremy Christopher Jordan
  • Publication number: 20210103017
    Abstract: A magnetic resonance (MR) imaging system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, and a sensor configured to detect electromagnetic interference conducted by a patient into an imaging region of the MR imaging system. The sensor may comprise at least one electrical conductor configured for electrically coupling to the patient. The MR imaging system may further comprise a noise reduction system configured to receive the electromagnetic interference from the sensor and to suppress electromagnetic interference in detected MR signals received by the MR imaging system based on the electromagnetic interference detected by the sensor.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 8, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Carole Lazarus, Eddy B. Boskamp, Jeremy Christopher Jordan
  • Publication number: 20210100474
    Abstract: A magnetic resonance (MR) imaging system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, and a sensor configured to detect electromagnetic interference conducted by a patient into an imaging region of the MR imaging system. The sensor may comprise at least one electrical conductor configured for electrically coupling to the patient. The MR imaging system may further comprise a noise reduction system configured to receive the electromagnetic interference from the sensor and to suppress electromagnetic interference in detected MR signals received by the MR imaging system based on the electromagnetic interference detected by the sensor.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 8, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Carole Lazarus, Eddy B. Boskamp, Jeremy Christopher Jordan
  • Patent number: 10921404
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet, a plurality of gradient coils, and at least one radio frequency coil, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: February 16, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Publication number: 20200341085
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicant: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, JR., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Publication number: 20200337587
    Abstract: Techniques are described for controlling components of a Magnetic Resonance Imaging (MRI) system with a single controller, such as a Field Programmable Gate Array (FPGA), by dynamically instructing the controller to issue commands to the components using a processor coupled to the controller. According to some aspects, the controller may issue commands to the components of the MRI system whilst actively receiving commands from the processor to be later issued to the components.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 29, 2020
    Applicant: Hyperfine Research, Inc.
    Inventors: Laura Sacolick, Jonathan Lowthert, Jeremy Christopher Jordan, Hadrien A. Dyvorne
  • Publication number: 20200335933
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 10775454
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: September 15, 2020
    Assignee: Hyperfire Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10768255
    Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 8, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Jonathan M. Rothberg, Jeremy Christopher Jordan, Michael Stephen Poole, Laura Sacolick, Todd Rearick, Gregory L. Charvat