Patents by Inventor Jeremy Chritz

Jeremy Chritz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12381702
    Abstract: Examples described herein include apparatuses and methods for full duplex device-to-device cooperative communication. Example systems described herein may include self-interference noise calculators. The output of a self-interference noise calculator may be used to compensate for the interference experienced due to signals transmitted by another antenna of the same wireless device or system. In implementing such a self-interference noise calculator, a selected wireless relaying device or wireless destination device may operate in a full-duplex mode, such that relayed messages may be transmitted as well as information from other sources or destinations during a common time period (e.g., symbol, slot, subframe, etc.).
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: August 5, 2025
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 12353725
    Abstract: Methods, systems, and devices for verification of a volatile memory, such as a dynamic random-access memory (DRAM), using a unique identifier (ID) are described. A memory device may store a unique ID for a DRAM component of the memory device in non-volatile memory (e.g., in the DRAM, external to the DRAM). A host device coupled with the memory device may store, to non-volatile memory at the host device, information for verifying the identity of the DRAM component, for example, based on the unique ID. The memory device and host device may perform a procedure for verification of the identity of the DRAM component using the unique ID of the DRAM and the verification information stored at the host device. If the host device detects that the DRAM has been replaced or modified based on the verification procedure, the host device may disable one or more features of the memory device.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: July 8, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Aaron Boehm, Jeremy Chritz, David Hulton, Tamara Schmitz, Max Vohra
  • Publication number: 20250147874
    Abstract: Methods, apparatuses, and systems for tensor memory access are described. Multiple data located in different physical addresses of memory may be concurrently read or written by, for example, employing various processing patterns of tensor or matrix related computations. A memory controller, which may comprise a data address generator, may be configured to generate a sequence of memory addresses for a memory access operation based on a starting address and a dimension of a tensor or matrix. At least one dimension of a tensor or matrix may correspond to a row, a column, a diagonal, a determinant, or an Nth dimension of the tensor or matrix. The memory controller may also comprise a buffer configured to read and write the data generated from or according to a sequence of memory of addresses.
    Type: Application
    Filed: January 10, 2025
    Publication date: May 8, 2025
    Applicant: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Publication number: 20250118350
    Abstract: A controller performs an access operation on a word line which is in a portion of a memory array in a memory device. The controller counts accesses on a portion-by-portion basis (e.g., a bank-by-bank basis, a sub-bank-by-sub-bank basis, etc.). The memory counts accesses on a word line-by-word line basis. The memory sets a refresh management (RFM) flag for a portion based on the counts associated with the word lines in that portion. The controller checks the RFM flag for a portion based on the access count for the portion. The controller issues an RFM command after checking the RFM flag if the RFM flag is set.
    Type: Application
    Filed: June 18, 2024
    Publication date: April 10, 2025
    Applicant: Micron Technology, Inc.
    Inventors: Randall J. Rooney, Jeremy Chritz
  • Patent number: 12237918
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The processing mode selection may include a single processing mode, a multi-processing mode, or a full processing mode. The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: May 16, 2023
    Date of Patent: February 25, 2025
    Inventors: Fa-Long Luo, Jaime Cummins, Jeremy Chritz, Tamara Schmitz
  • Patent number: 12229044
    Abstract: Methods, apparatuses, and systems for tensor memory access are described. Multiple data located in different physical addresses of memory may be concurrently read or written by, for example, employing various processing patterns of tensor or matrix related computations. A memory controller, which may comprise a data address generator, may be configured to generate a sequence of memory addresses for a memory access operation based on a starting address and a dimension of a tensor or matrix. At least one dimension of a tensor or matrix may correspond to a row, a column, a diagonal, a determinant, or an Nth dimension of the tensor or matrix. The memory controller may also comprise a buffer configured to read and write the data generated from or according to a sequence of memory of addresses.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: February 18, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 12177167
    Abstract: Examples described herein include apparatuses and methods for full duplex device-to-device cooperative communication. Example systems described herein may include self-interference noise calculators. The output of a self-interference noise calculator may be used to compensate for the interference experienced due to signals transmitted by another antenna of the same wireless device or system. In implementing such a self-interference noise calculator, a selected wireless relaying device or wireless destination device may operate in a full-duplex mode, such that relayed messages may be transmitted as well as information from other sources or destinations during a common time period (e.g., symbol, slot, subframe, etc.).
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: December 24, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 12149303
    Abstract: Methods, systems, and devices for signal processing and wireless communication are described. For example, a device may include a plurality of antennas operable to transmit and receive communication packets via a plurality of communication protocols and an integrated circuit chip coupled to the plurality of antennas. The integrated circuit chip may comprise a first and a second plurality of processing elements. The first plurality of processing elements may be operable to receive communication packets via a first one of a plurality of communication protocols and process an optimal route. The second plurality of processing elements may be communicatively coupled to the first plurality of processing elements and operable to determine the optimal route to transmit the communication packets from a source device to a destination device based, at least in part, on transmission characteristics associated with at least one of the source or destination devices.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 19, 2024
    Inventor: Jeremy Chritz
  • Patent number: 12143266
    Abstract: Examples described herein include methods, devices, and systems which may implement different processing stages for wireless communication in processing units. Such data processing may include a source data processing stage, a baseband processing stage, a digital front-end processing stage, and a radio frequency (RF) processing stage. Data may be received from a sensor of device and then processed in the stages to generate output data for transmission. Processing the data in the various stages may occur during an active time period of a discontinuous operating mode. During the active time period, a reconfigurable hardware platform may allocate all or a portion of the processing units to implement the processing stages. Examples of systems and methods described herein may facilitate the processing of data for 5G (e.g., New Radio (NR)) wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: November 12, 2024
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 12089232
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of configuration modes for baseband units (BBU) and remote radio heads (RRH). For example, a computing system including a BBU and a RRH may receive a configuration mode selection including information indicative of a configuration mode for respective processing units of the BBU and the RRH. The computing system allocates the respective processing units to perform wireless processing stages associated with a wireless protocol. The BBU and/or the RRH may generate an output data stream based on the mixing of coefficient data with input data at the BBU and/or the RRH. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: September 10, 2024
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Publication number: 20240267266
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal. The adjusted signal is received by a corresponding wireless receiver to compensate for the self-interference noise generated by a wireless transmitter transmitting on the same frequency band as the wireless receiver is receiving.
    Type: Application
    Filed: January 2, 2024
    Publication date: August 8, 2024
    Inventors: Fa-Long Luo, Jeremy Chritz, Jaime Cummins, Tamara Schmitz
  • Publication number: 20240256869
    Abstract: Systems, methods, and apparatuses related to cooperative learning neural networks are described. Cooperative learning neural networks may include neural networks which utilize sensor data received wirelessly from at least one other wireless communication device to train the neural network. For example, cooperative learning neural networks described herein may be used to develop weights which are associated with objects or conditions at one device and which may be transmitted to a second device, where they may be used to train the second device to react to such objects or conditions. The disclosed features may be used in various contexts, including machine-type communication, machine-to-machine communication, device-to-device communication, and the like. The disclosed techniques may be employed in a wireless (e.g., cellular) communication system, which may operate according to various standardized protocols.
    Type: Application
    Filed: March 19, 2024
    Publication date: August 1, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Publication number: 20240178987
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of cross correlation including symbols indicative of radio frequency (RF) energy. An electronic device including a statistic calculator may be configured to calculate a statistic including the cross-correlation of the symbols. The electronic device may include a comparator configured to provide a signal indicative of a presence or absence of a wireless communication signal in the particular portion of the wireless spectrum based on a comparison of the statistic with a threshold. A decoder/precoder may be configured to receive the signal indicative of the presence or absence of the wireless communication signal and to decode the symbols responsive to a signal indicative of the presence of the wireless communication signal. Examples of systems and methods described herein may facilitate the processing of data for wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: February 8, 2024
    Publication date: May 30, 2024
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 11984186
    Abstract: Methods, apparatuses, and systems for repairing defective memory cells in regions of a memory array associated with high or low priority levels are disclosed. A repair address generator may be configured to generate a memory address map for repair (e.g., blowing fuses at a fuse circuit), depending on whether certain applications may operate at a high priority level indicative of a low bit error rate or a low priority level indicative of a higher bit error rate. For example, a specified error rate associated with a low priority level may correspond to a threshold error rate for certain applications, such as a neural network application that stores trained weights. Such neural network applications may access trained weights being partially stored in defective memory cells, with the least significant bits of such trained weights being stored in defective memory cells that are not repaired according to the memory address map.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: May 14, 2024
    Assignee: Micron Technology, Inc.
    Inventors: David Hulton, Tamara Schmitz, Jonathan D. Harms, Jeremy Chritz, Kevin Majerus
  • Patent number: 11973525
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: April 30, 2024
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11941518
    Abstract: Systems, methods, and apparatuses related to cooperative learning neural networks are described. Cooperative learning neural networks may include neural networks which utilize sensor data received wirelessly from at least one other wireless communication device to train the neural network. For example, cooperative learning neural networks described herein may be used to develop weights which are associated with objects or conditions at one device and which may be transmitted to a second device, where they may be used to train the second device to react to such objects or conditions. The disclosed features may be used in various contexts, including machine-type communication, machine-to-machine communication, device-to-device communication, and the like. The disclosed techniques may be employed in a wireless (e.g., cellular) communication system, which may operate according to various standardized protocols.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: March 26, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 11941516
    Abstract: Systems, methods, and apparatuses related to cooperative learning neural networks are described. Cooperative learning neural networks may include neural networks which utilize sensor data received wirelessly from at least one other wireless communication device to train the neural network. For example, cooperative learning neural networks described herein may be used to develop weights which are associated with objects or conditions at one device and which may be transmitted to a second device, where they may be used to train the second device to react to such objects or conditions. The disclosed features may be used in various contexts, including machine-type communication, machine-to-machine communication, device-to-device communication, and the like. The disclosed techniques may be employed in a wireless (e.g., cellular) communication system, which may operate according to various standardized protocols.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 26, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 11902411
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of cross correlation including symbols indicative of radio frequency (RF) energy. An electronic device including a statistic calculator may be configured to calculate a statistic including the cross-correlation of the symbols. The electronic device may include a comparator configured to provide a signal indicative of a presence or absence of a wireless communication signal in the particular portion of the wireless spectrum based on a comparison of the statistic with a threshold. A decoder/precoder may be configured to receive the signal indicative of the presence or absence of the wireless communication signal and to decode the symbols responsive to a signal indicative of the presence of the wireless communication signal. Examples of systems and methods described herein may facilitate the processing of data for wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: February 13, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 11899942
    Abstract: Examples of systems and method described herein provide for accessing memory devices and, concurrently, generating access codes using an authenticated stream cipher at a memory controller. For example, a memory controller may use a memory access request to, concurrently, perform translation logic and/or error correction on data associated with the memory access request; while also utilizing the memory address as an initialization vector for an authenticated stream cipher to generate an access code. The error correction may be performed subsequent to address translation for a write operation (or prior to address translation for a read operation) to improve processing speed of memory access requests at a memory controller; while the memory controller also generates the encrypted access code.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: February 13, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, David Hulton
  • Patent number: 11899829
    Abstract: Examples of systems and method described herein or generating, in a memory controller and/or memory device, access codes for memory regions of the memory device using authentication logic, and for accessing the memory device using the access codes. For example, a memory controller and/or a coupled memory device may generate access codes that a host computing device may include in a memory access request to access one or more memory regions of the memory device. Data read or written at the memory device may in some examples only be accessed in accordance with the access codes for memory regions of the memory device. Accordingly, the systems and methods described herein may provide security for specific memory regions of a memory device because the access code are updated periodically (e.g., based on obtained reset indication) or in accordance with an updated count value from a counter.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 13, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, David Hulton