Patents by Inventor Jeremy G. Koob

Jeremy G. Koob has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12195734
    Abstract: RNA editing tools for use in systems designed to measure RNA in vivo and manipulate specific cell types are disclosed herein. An RNA sensor system comprising a) a single-stranded RNA (ssRNA) sensor comprising a stop codon and a payload; optionally wherein the ssRNA sensor further comprises a normalizing gene; and b) an adenosine deaminase acting on RNA (ADAR) deaminase; wherein the sensor is capable of binding to a ssRNA target to form a double-stranded RNA (dsRNA) duplex that becomes a substrate for the ADAR deaminase; wherein the substrate comprises a mispairing within the stop codon; and wherein the mispairing is editable by the ADAR deaminase, which editing can effectively remove the stop codon so as to enable translation and expression of the payload. A method of quantifying ribonucleic acid (RNA) levels using the RNA sensor system is also disclosed.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: January 14, 2025
    Assignees: Massachusetts Institute of Technology, The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: Kaiyi Jiang, Rohan Neil Krajeski, Omar Osama Abudayyeh, Jonathan S. Gootenberg, Yifan Zhang, Fei Chen, Xi Chen, Jeremy G. Koob
  • Publication number: 20230123513
    Abstract: RNA editing tools for use in systems designed to measure RNA in vivo and manipulate specific cell types are disclosed herein. An RNA sensor system comprising a) a single-stranded RNA (ssRNA) sensor comprising a stop codon and a payload; optionally wherein the ssRNA sensor further comprises a normalizing gene; and b) an adenosine deaminase acting on RNA (ADAR) deaminase; wherein the sensor is capable of binding to a ssRNA target to form a double-stranded RNA (dsRNA) duplex that becomes a substrate for the ADAR deaminase; wherein the substrate comprises a mispairing within the stop codon; and wherein the mispairing is editable by the ADAR deaminase, which editing can effectively remove the stop codon so as to enable translation and expression of the payload. A method of quantifying ribonucleic acid (RNA) levels using the RNA sensor system is also disclosed.
    Type: Application
    Filed: June 14, 2022
    Publication date: April 20, 2023
    Inventors: Kaiyi Jiang, Rohan Neil Krajeski, Omar Osama Abudayyeh, Jonathan S. Gootenberg, Yifan Zhang, Fei Chen, Xi Chen, Jeremy G. Koob