Patents by Inventor Jeremy Joseph Dahl

Jeremy Joseph Dahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11397167
    Abstract: Measuring local speed of sound for ultrasound by inducing ultrasound waves in a subject by focusing an ultrasound beam, using an ultrasound Tx transducer to propagate waves from a focal point to the surface, measuring a time of arrival of the waves using at least three single Rx transducer surface elements, signal traces recorded on individual Rx transducers are evenly sampled in time, an average speed of sound equals an arithmetic mean of local sound-speed values sampled along a wave path, each Rx transducer outputs a separate arrival time of the waves, computing a local speed of sound (ci) of waves from an average speed of sound (cavg) using a computer that receives arrival times, where c avg = 1 N ? ? i = 1 N ? c i , where ci=di/Ts, di is the length a tissue traveled during one sampling period Ts, and using ci to differentiate human disease, or with ultrasound measurements to differentiate degrees of human disease.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: July 26, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jeremy Joseph Dahl, Scott S. Hsieh, Marko Jakovljevic
  • Patent number: 10792518
    Abstract: A passive cavitation mapping method is provided that includes capturing a channel signal from at least one ultrasound transducer in an array of ultrasound transducers, isolating a cavitation signal in the channel signal, time-gating the channel signal about the cavitation signal, computing a time-delay between neighboring the cavitation signals in adjacent the channel signals, computing a modified parabolic fit to the square of the arrival times, where the modified parabolic fit includes a coordinate transformation using an x location of a leading edge of wavefronts of the cavitation signal and a maximum arrival time of the cavitation signal, extracting a location of a cavitation signal source at point (x, z) in the coordinate transformation, computing a cavitation magnitude for each non-eliminated cavitation signal, creating a passive cavitation map by convolving the cavitation magnitude and the source location with an uncertainty function, and using the cavitation map for therapeutic ultrasound applications
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: October 6, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Taehwa Lee, Juergen K. Willmann, Jeremy Joseph Dahl
  • Patent number: 10751028
    Abstract: Ultrasonic imaging is performed by constructing spatial coherence images of a target having microbubbles in it. The basis for this approach is the observation that the spatial coherence of microbubbles differs from the spatial coherence of tissue and the spatial coherence of image noise. Therefore, imaging based on spatial coherence provides a way to suppress noise signals and tissue signals relative to the microbubble signals.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 25, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jeremy Joseph Dahl, Dongwoon Hyun, Juergen K. Willmann
  • Publication number: 20190009108
    Abstract: A passive cavitation mapping method is provided that includes capturing a channel signal from at least one ultrasound transducer in an array of ultrasound transducers, isolating a cavitation signal in the channel signal, time-gating the channel signal about the cavitation signal, computing a time-delay between neighboring the cavitation signals in adjacent the channel signals, computing a modified parabolic fit to the square of the arrival times, where the modified parabolic fit includes a coordinate transformation using an x location of a leading edge of wavefronts of the cavitation signal and a maximum arrival time of the cavitation signal, extracting a location of a cavitation signal source at point (x, z) in the coordinate transformation, computing a cavitation magnitude for each non-eliminated cavitation signal, creating a passive cavitation map by convolving the cavitation magnitude and the source location with an uncertainty function, and using the cavitation map for therapeutic ultrasound applications
    Type: Application
    Filed: July 5, 2018
    Publication date: January 10, 2019
    Inventors: Taehwa Lee, Juergen K. Willmann, Jeremy Joseph Dahl
  • Patent number: 10111644
    Abstract: Acoustic imaging based on angular coherence is provided. The target is insonified with collimated acoustic beams at several different incidence angles. The resulting images are processed to determine angular coherence averaged over angle, and then integration of the angular coherence for relatively small angular differences is used to provide the output angular coherence image. In cases where flow imaging is done, the images are first filtered to suppress signals from stationary features of the target, multiple acquisitions are acquired, and the final flow image is computed by summing the squares of the angular coherence images (on a pixel by pixel basis).
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 30, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jeremy Joseph Dahl, You Leo Li
  • Publication number: 20180153504
    Abstract: Methods, system, and devices that are adapted to restrict the movement of an ultrasound transducer about at least one axis or point, and tag a plurality of frames of electronic signals indicative of information received by the ultrasound transducer with information sensed by an orientation sensor. The methods, system, and devices can generate a 3D ultrasound volume image of the patient by positioning the plurality of tagged frames of electronic signals at their respective orientations relative to the axis or point.
    Type: Application
    Filed: June 8, 2016
    Publication date: June 7, 2018
    Inventors: Carl Dean HERICKHOFF, Jeremy Joseph DAHL, Joshua Seth BRODER, Matthew Robert MORGAN
  • Publication number: 20180143165
    Abstract: Measuring local speed of sound for ultrasound by inducing ultrasound waves in a subject by focusing an ultrasound beam, using an ultrasound Tx transducer to propagate waves from a focal point to the surface, measuring a time of arrival of the waves using at least three single Rx transducer surface elements, signal traces recorded on individual Rx transducers are evenly sampled in time, an average speed of sound equals an arithmetic mean of local sound-speed values sampled along a wave path, each Rx transducer outputs a separate arrival time of the waves, computing a local speed of sound (ci) of waves from an average speed of sound (cavg) using a computer that receives arrival times, where c avg = 1 N ? ? i = 1 N ? c i , where ci=di/Ts, di is the length a tissue traveled during one sampling period Ts, and using ci to differentiate human disease, or with ultrasound measurements to differentiate degrees of human disease.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 24, 2018
    Inventors: Jeremy Joseph Dahl, Scott S. Hsieh, Marko Jakovljevic
  • Publication number: 20170281121
    Abstract: Acoustic imaging based on angular coherence is provided. The target is insonified with collimated acoustic beams at several different incidence angles. The resulting images are processed to determine angular coherence averaged over angle, and then integration of the angular coherence for relatively small angular differences is used to provide the output angular coherence image. In cases where flow imaging is done, the images are first filtered to suppress signals from stationary features of the target, multiple acquisitions are acquired, and the final flow image is computed by summing the squares of the angular coherence images (on a pixel by pixel basis).
    Type: Application
    Filed: April 4, 2017
    Publication date: October 5, 2017
    Inventors: Jeremy Joseph Dahl, You Leo Li
  • Publication number: 20170281129
    Abstract: Ultrasonic imaging is performed by constructing spatial coherence images of a target having microbubbles in it. The basis for this approach is the observation that the spatial coherence of microbubbles differs from the spatial coherence of tissue and the spatial coherence of image noise. Therefore, imaging based on spatial coherence provides a way to suppress noise signals and tissue signals relative to the microbubble signals.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: Jeremy Joseph Dahl, Dongwoon Hyun, Juergen K. Willmann