Patents by Inventor Jeremy M. Praetorius

Jeremy M. Praetorius has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976142
    Abstract: A hydrogel comprising water, and a plurality of titanium-silica-chromium nanoparticle agglomerates, wherein each titanium-silica-chromium nanoparticle agglomerate is an agglomeration of titanium-silica-chromium nanoparticles, the agglomerates having an average titanium penetration depth designated x with a coefficient of variation for the average titanium penetration depth of less than about 1.0 wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: May 7, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20240091744
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20240052073
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 15, 2024
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, JR., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11866529
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec?1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec?1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, Jr., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin
  • Patent number: 11865505
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: January 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius
  • Patent number: 11859024
    Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: January 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
  • Publication number: 20230415127
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Inventors: Jeremy M. PRAETORIUS, Eric D. SCHWERDTFEGER, Max P. MCDANIEL, Ted H. CYMBALUK, Connor D. BOXELL, Alan L. SOLENBERGER, Kathy S. CLEAR
  • Publication number: 20230416419
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Patent number: 11814449
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Patent number: 11814457
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: November 14, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Patent number: 11801490
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: October 31, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Eric D. Schwerdtfeger, Max P. McDaniel, Ted H. Cymbaluk, Connor D. Boxell, Alan L Solenberger, Kathy S. Clear
  • Publication number: 20230321634
    Abstract: A hydrocarbon compound and carbon monoxide are reacted in the presence of either a supported chromium (VI) catalyst or a supported chromium (II) catalyst, optionally with UV-visible light irradiation and/or exposure to an oxidizing atmosphere, followed by removing a reaction product containing an alcohol compound and/or a carbonyl compound from the respective chromium catalyst. Often, the reaction product contains one or more ketone and/or aldehyde compounds.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 12, 2023
    Inventors: Max P. McDaniel, Mitchell D. Refvik, Jeremy M. Praetorius, Kathy S. Clear, Jared L. Barr, Carlos A. Cruz, Masud M. Monwar
  • Publication number: 20230227592
    Abstract: Ethylene-based polymers having a density from 0.94 to 0.96 g/cm3, a Mn from 5,000 to 14,000 g/mol, a ratio of Mw/Mn from 18 to 40, and at least one of a PENT value at 2.4 MPa of at least 11,500 hr and/or a W90 from 7.5 to 15 wt. % are disclosed. Additional ethylene polymers can have the same density, Mn, and Mw/Mn values, as well as a relaxation time from 0.5 to 3.5 sec, a CY-a parameter from 0.48 to 0.68, a HLMI from 5 to 11 g/10 min, a viscosity at HLMI from 3,000 to 7,500 Pa-sec, and a higher molecular weight component (HMW) and a lower molecular weight (LMW) component, in which a ratio of the number of SCBs at Mp of the HMW component to the number of SCBs at Mp of the LMW component is from 3.5 to 8.
    Type: Application
    Filed: January 14, 2022
    Publication date: July 20, 2023
    Inventors: Youlu YU, Qing YANG, Ashish M. SUKHADIA, David A. SOULES, Jeremy M. PRAETORIUS, Vivek ROHATGI
  • Patent number: 11697697
    Abstract: A method of preparing a catalyst support comprising contacting an acid-soluble titanium-containing compound with an acid to form a first mixture; contacting the first mixture with an alkali metal silicate to form a hydrogel which has a silica content of from about 18 wt. % to about 35 wt. % based on the total weight of the hydrogel; contacting the hydrogel with an alkaline solution to form an aged hydrogel; washing the aged hydrogel to form a washed hydrogel; and drying the washed hydrogel to produce a titanium-containing-silica support wherein the support has a pore volume equal to or greater than about 1.4 cm3/g.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: July 11, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20230192921
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 22, 2023
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Publication number: 20230192909
    Abstract: Sulfated bentonite compositions are characterized by a total pore volume from 0.4 to 1 mL/g, a total BET surface area from 200 to 400 m2/g, and an average pore diameter from 55 to 100 Angstroms. The sulfated bentonite compositions also can be characterized by a d50 average particle size in a range from 15 to 50 µm and a ratio of d90/d10 from 3 to 15. The sulfated bentonite compositions can contain a sulfated bentonite and from 10 to 90 wt. % of colloidal particles, or the sulfated bentonite compositions can contain a sulfated bentonite and from 0.2 to 10 mmol/g of zinc and/or phosphorus. These compositions can be utilized in metallocene catalyst systems to produce ethylene based polymers.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Inventors: Max P. McDaniel, Qing Yang, Ryan N. Rose, Kathy S. Clear, Graham R. Lief, Eric D. Schwerdtfeger, Anand Ramanathan, Jeremy M. Praetorius, Connor D. Boxell
  • Publication number: 20230173474
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11634521
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: April 25, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Patent number: 11634567
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and 15-35 wt. % of a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a ratio of Mw/Mn from 2 to 5, a melt index less than 2 g/10 min, and a CY-a parameter at 190° C. from 0.35 to 0.7. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications. Further, methods for improving film Elmendorf tear strength also are described.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: April 25, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Chung Ching Tso, Ashish M. Sukhadia, Yongwoo Inn, Qing Yang, John T. Blagg
  • Publication number: 20230124846
    Abstract: Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3. a ratio of HLMI/MI from 185 to 550. an IB parameter from 1.46 to 1.80, a tan ? at 0.1 sec-1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec-1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 20, 2023
    Inventors: Jeremy M. Praetorius, Yongwoo Inn, Alfred E. Brown, JR., Brandy Rutledge-Ryal, Carlos A. Cruz, Jay M. Chaffin