Patents by Inventor Jeremy Matthew SAGE

Jeremy Matthew SAGE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250091163
    Abstract: Aspects of the present disclosure relate generally to systems and methods for use in the implementation and/or operation of preparing photonic integrated circuits (PICs). Specifically, the method include coupling a dicing tape to a first side of a wafer. The method also includes performing a first laser processing step to form a modified layer by applying at least one laser beam of a wavelength that has transmissivity through the wafer along a first projected dicing line to define a first facet and performing a second laser processing step to form the modified layer by applying the at least one laser beam to the wafer along a second projected dicing line to define a second facet. The method further includes expanding the dicing tape to divide the wafer from the modified layer along at least the first projected dicing line and the second projected dicing line into PIC chips.
    Type: Application
    Filed: September 18, 2024
    Publication date: March 20, 2025
    Inventors: Alex YULAEV, James Walker Steere, Kang Tan, Jeremy Matthew Sage
  • Patent number: 12217882
    Abstract: Aspects of the present disclosure may include a method and/or a system for identifying an ion chain having a plurality of trapped ions, selecting at least two non-consecutive trapped ions in the ion chain for implementing a qubit, applying at least a first Raman beam to shuttle at least one neighbor ion of the at least two non-consecutive trapped ions from a ground state to a metastable state, and applying at least a second Raman beam to one or more of the at least two non-consecutive trapped ions, after shuttling the at least one neighbor ion to the metastable state, to transition from a first manifold to a second manifold.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: February 4, 2025
    Assignee: IonQ, Inc.
    Inventors: Michael Lurie Goldman, Jonathan Albert Mizrahi, Jeremy Matthew Sage
  • Patent number: 12217133
    Abstract: Aspects of the present disclosure may include a method and/or a system for identifying an ion chain having a plurality of trapped ions, selecting at least two non-consecutive trapped ions in the ion chain for implementing a qubit, applying at least a first Raman beam to shuttle at least one neighbor ion of the at least two non-consecutive trapped ions from a ground state to a metastable state, and applying at least a second Raman beam to one or more of the at least two non-consecutive trapped ions, after shuttling the at least one neighbor ion to the metastable state, to transition from a first manifold to a second manifold.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: February 4, 2025
    Assignee: IonQ, Inc.
    Inventors: Michael Lurie Goldman, Laird Nicholas Egan, Jeremy Matthew Sage
  • Publication number: 20240054376
    Abstract: Aspects of the present disclosure relate generally to systems and methods for use in the implementation and/or operation of quantum information processing (QIP) systems, and more particularly, to the use of deflectors in trapped ion QIP systems for individually addressing long ion chains. Methods are described for using acousto-optic deflectors (AODs) in optical Raman transitions to implement single-qubit gates and two-qubit gates. A QIP system is also described that is configured to use AODs in optical Raman transitions to implement single-qubit gates and two-qubit gates.
    Type: Application
    Filed: December 6, 2022
    Publication date: February 15, 2024
    Inventors: Kai Makoto HUDEK, Jeremy Matthew SAGE, Neal PISENTI
  • Publication number: 20240054380
    Abstract: Aspects of the present disclosure relate generally to parallel sideband cooling of multiple trapped-ion motional modes with deflectors (e.g., acousto-optic deflectors or AODs) in quantum information processing (QIP) systems. A method and a system are described in which for an ion chain a first group of ions (e.g., middle section of the ion chain) and a second group of ions (e.g., outer sections of the ion chain) are identified. The method and system include performing sideband cooling by applying, to the first group of ions, a first pair of optical beams using a first pair of AODs, and applying, to the second group of ions, a second pair of optical beams using a second pair of AODs. For each AOD, an acousto-optic modulator (AOM) may be placed upstream to provide frequency modulation for matching frequency differences for correct detuning as part of the sideband cooling operation.
    Type: Application
    Filed: December 6, 2022
    Publication date: February 15, 2024
    Inventors: Jeremy Matthew SAGE, Kai HUDEK
  • Publication number: 20230368936
    Abstract: Aspects of the present disclosure may include a method and/or a system for identifying an ion chain having a plurality of trapped ions, selecting at least two non-consecutive trapped ions in the ion chain for implementing a qubit, applying at least a first Raman beam to shuttle at least one neighbor ion of the at least two non-consecutive trapped ions from a ground state to a metastable state, and applying at least a second Raman beam to one or more of the at least two non-consecutive trapped ions, after shuttling the at least one neighbor ion to the metastable state, to transition from a first manifold to a second manifold.
    Type: Application
    Filed: September 20, 2022
    Publication date: November 16, 2023
    Inventors: Michael Lurie GOLDMAN, Jonathan Albert MIZRAHI, Jeremy Matthew SAGE
  • Publication number: 20230343577
    Abstract: Aspects of the present disclosure describe devices trapping devices for use in quantum information processing (QIP) architectures, and more particularly, to the use and fabrication of a multi-layer ion trap on shaped glass or dielectric substrate. A method for fabricating the ion trap is described that includes preparing a back surface of the substrate, building a multi-layer stack on the top surface of the substrate, and completing the back etch to break through the substrate and etching through a metal and dielectric in the multi-layer stack to complete the formation of the ion trap. Shaping of the ion trap may also include trap narrowing features, wings, and/or undercutting. An ion trap fabricated using this approach may be used in a QIP system to trap atomic species provided through a hole in the back of the substrate for use as qubits in quantum operations and computations.
    Type: Application
    Filed: April 18, 2023
    Publication date: October 26, 2023
    Inventors: Jason Madjdi AMINI, Jonathan Albert MIZRAHI, Jeremy Matthew SAGE, James Walker STEERE
  • Publication number: 20230059264
    Abstract: The use of multiple ion chains in a single ion trap for quantum information processing (QIP) systems is described. Each chain can have its own set of laser beams with which to implement and operate quantum gates within that chain, where each chain may therefore correspond to a single quantum computing register or core. Operations can be performed in parallel across all of these chains as they can be treated independently from each other. To implement and operate quantum gates between different chains, neighboring chains are merged into a single, larger chain, in which one can perform quantum gates between any of the ions in the larger chain. The combined chains can then be separated again by another shuttling event as needed. To implement and operate quantum gates between ions which do not occupy neighboring chains, swap gates can be used via a sequence of intervening chains.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 23, 2023
    Inventors: Jungsang KIM, Jonathan Albert MIZRAHI, Jason Madjdi AMINI, Kenneth WRIGHT, Neal PISENTI, Hermann UYS, Ming LI, Michael Lurie GOLDMAN, Jeremy Matthew SAGE, Kai Makoto HUDEK, Yunseong NAM, Nikodem GRZESIAK, Reinhold BLUMEL
  • Publication number: 20230036559
    Abstract: Aspects of the present disclosure include methods and systems for modulating light sources including applying, through an acousto-optic modulator (AOM) disposed in series with an electro-optic modulator (EOM), a global optical beam to a plurality of dual-space, single-species (DSSS) trapped ions at a wavelength near a transition center and adjusting a drive tone of at least one of the EOM or the AOM to modulate the global beam to emit at approximately half of a S1/2 hyperfine frequency.
    Type: Application
    Filed: July 14, 2022
    Publication date: February 2, 2023
    Inventors: Michael Lurie GOLDMAN, Jeremy Matthew SAGE, Laird Nicholas EGAN
  • Publication number: 20230032929
    Abstract: Aspects of the present disclosure may include a method and/or a system for identifying an ion chain having a plurality of trapped ions, selecting at least two non-consecutive trapped ions in the ion chain for implementing a qubit, applying at least a first Raman beam to shuttle at least one neighbor ion of the at least two non-consecutive trapped ions from a ground state to a metastable state, and applying at least a second Raman beam to one or more of the at least two non-consecutive trapped ions, after shuttling the at least one neighbor ion to the metastable state, to transition from a first manifold to a second manifold.
    Type: Application
    Filed: July 18, 2022
    Publication date: February 2, 2023
    Inventors: Michael Lurie GOLDMAN, Jonathan Albert MIZRAHI, Jeremy Matthew SAGE
  • Publication number: 20230024811
    Abstract: Aspects of the present disclosure may include a method and/or a system for identifying an ion chain having a plurality of trapped ions, selecting at least two non-consecutive trapped ions in the ion chain for implementing a qubit, applying at least a first Raman beam to shuttle at least one neighbor ion of the at least two non-consecutive trapped ions from a ground state to a metastable state, and applying at least a second Raman beam to one or more of the at least two non-consecutive trapped ions, after shuttling the at least one neighbor ion to the metastable state, to transition from a first manifold to a second manifold.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 26, 2023
    Inventors: Michael Lurie GOLDMAN, Jonathan Albert MIZRAHI, Jeremy Matthew SAGE
  • Publication number: 20230018526
    Abstract: A method and system is provided for operating a quantum information processing (QIP) system, including a dual-space, single-species architecture for trapped-ion quantum information processing. An exemplary method of operating quantum information processing (QIP) system includes applying a global optical beam to a plurality of dual-space, single-species (DSSS) trapped ions; and applying at least one Raman beam of a plurality of Raman beams to a DSSS trapped ion of the plurality of DSSS trapped ions to transition a qubit associated with the DSSS trapped ion from a ground state, a metastable state, or an optical state to a different state.
    Type: Application
    Filed: June 9, 2022
    Publication date: January 19, 2023
    Inventors: Jeremy Matthew SAGE, Michael Lurie GOLDMAN, Laird Nicholas EGAN
  • Publication number: 20230018878
    Abstract: Aspects of the present disclosure may include a method and/or a system for biasing FOFI qubits including applying a magnetic field to one or more first order field insensitive (FOFI) qubits, wherein a first magnetic field sensitivity of the one or more FOFI qubits in a first state of a first manifold is substantially equal to a second magnetic field sensitivity of the one or more FOFI qubits in a second state of a second manifold, a global optical beam to the one or more FOFI qubits, and one or more Raman beams, wherein an application of at least one of the global optical beam or the one or more Raman beams transitions the one or more FOFI qubits from the first state to the second state.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 19, 2023
    Inventors: Jeremy Matthew SAGE, Michael Lurie GOLDMAN, Laird Nicholas EGAN
  • Publication number: 20230018922
    Abstract: Aspects of the present disclosure may include a method and/or a system for trap-door loading including pumping at least one qubit ion from a first manifold of a first plurality of manifolds to a second manifold of the first plurality of manifolds, drive the at least one qubit ion via a partial clock transition from the second manifold of the first plurality of manifolds to a third manifold of a second plurality of manifolds, applying one or more Raman pulses to transfer the at least one qubit ion from the third manifold of the second plurality of manifolds to a fourth manifold of the second plurality of manifolds, flushing the at least one qubit ion using a high-fidelity pumping back to the first plurality of manifolds, and illuminating the first plurality of manifolds for verification.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 19, 2023
    Inventors: Jeremy Matthew SAGE, Michael Lurie GOLDMAN