Patents by Inventor Jeremy NEDWELL

Jeremy NEDWELL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9422743
    Abstract: In order to determine the particular cut possessed by a tumbler of a mechanical lock, the tumbler is stimulated with mechanical energy. The vibrational response of the tumbler is detected, and the detected response is used in determining which cut of the plurality of possible cuts the tumbler possesses. The cut of a lock tumbler is defined by its shape and/or size. For example, in the case of a pin-tumbler lock, the cut of a pin is defined by its length. Different cuts of tumbler will therefore exhibit different vibrational responses to stimulation by mechanical energy, and these different vibrational responses can be used to determine which cut the tumbler possesses, for example by comparing with the vibrational responses of real or modeled tumblers with known cuts. The response may be detected while the tumbler is being stimulated, and the responses to different frequencies of stimulation may be detected and processed.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 23, 2016
    Inventor: Jeremy Nedwell
  • Patent number: 9366056
    Abstract: In order to determine the particular cut possessed by a tumbler of a mechanical lock, the tumbler is stimulated with mechanical energy. The vibrational response of the tumbler is detected, and the detected response is used in determining which of the possible cuts the tumbler possesses. The cut of a lock tumbler is defined by its shape and/or size. For example, in the case of a pin tumbler lock, the cut of a pin is defined by its length. Different cuts of tumbler will therefore exhibit different vibrational responses to stimulation by mechanical energy, and these different vibrational responses can be used to determine which cut the tumbler possesses, for example by comparing with the vibrational responses of real or modeled tumblers with known cuts. The tumbler may be stimulated by an impulse of mechanical energy, and, after stimulating the tumbler, the vibrational response of the tumbler may be detected over a period of time.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: June 14, 2016
    Inventor: Jeremy Nedwell
  • Publication number: 20150040413
    Abstract: In order to determine the particular cut possessed by a tumbler of a mechanical lock, the tumbler is stimulated with mechanical energy. The vibrational response of the tumbler is detected, and the detected response is used in determining which of the possible cuts the tumbler possesses. The cut of a lock tumbler is defined by its shape and/or size. For example, in the case of a pin tumbler lock, the cut of a pin is defined by its length. Different cuts of tumbler will herefore exhibit different vibrational responses to stimulation by mechanical energy, and these different vibrational responses can be used to determine which cut the tumbler possesses, for example by comparing with the vibrational responses of real or modeled tumblers with known cuts. The tumbler may be stimulated by an impulse of mechanical energy, and, after stimulating the tumbler, the vibrational response of the tumbler may be detected over a period of time.
    Type: Application
    Filed: February 15, 2013
    Publication date: February 12, 2015
    Inventor: Jeremy Nedwell
  • Publication number: 20150033861
    Abstract: In order to determine the particular cut possessed by a tumbler of a mechanical lock, the tumbler is stimulated with mechanical energy. The vibrational response of the tumbler is detected, and the detected response is used in determining which cut of the plurality of possible cuts the tumbler possesses. The cut of a lock tumbler is defined by its shape and/or size. For example, in the case of a pin-tumbler lock, the cut of a pin is defined by its length. Different cuts of tumbler will therefore exhibit different vibrational responses to stimulation by mechanical energy, and these different vibrational responses can be used to determine which cut the tumbler possesses, for example by comparing with the vibrational responses of real or modeled tumblers with known cuts. The response may be detected while the tumbler is being stimulated, and the responses to different frequencies of stimulation may be detected and processed.
    Type: Application
    Filed: February 15, 2013
    Publication date: February 5, 2015
    Inventor: Jeremy NEDWELL