Patents by Inventor Jeremy P. Hilton

Jeremy P. Hilton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9400499
    Abstract: Systems and methods for integrating quantum computing systems into mobile systems for the purpose of providing real-time, quantum computer-based control of the mobile systems are described. A mobile system includes a data extraction subsystem that extracts data from an external environment of the mobile system and a quantum computing subsystem that receives data from the data extraction subsystem and performs a quantum computing operation in real-time using the data from the data extraction subsystem. A result of the quantum computing operation influences a behavior of the mobile system, such as the navigation of the mobile system or an action performed by the mobile system. The on-board quantum computing subsystem includes on-board quantum computing infrastructure that is adapted to suit the needs and spatial constraints of the mobile system.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 26, 2016
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Colin P. Williams, Jeremy P. Hilton
  • Publication number: 20160026183
    Abstract: Systems and methods for integrating quantum computing systems into mobile systems for the purpose of providing real-time, quantum computer-based control of the mobile systems are described. A mobile system includes a data extraction subsystem that extracts data from an external environment of the mobile system and a quantum computing subsystem that receives data from the data extraction subsystem and performs a quantum computing operation in real-time using the data from the data extraction subsystem. A result of the quantum computing operation influences a behavior of the mobile system, such as the navigation of the mobile system or an action performed by the mobile system. The on-board quantum computing subsystem includes on-board quantum computing infrastructure that is adapted to suit the needs and spatial constraints of the mobile system.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Inventors: Colin P. Williams, Jeremy P. Hilton
  • Patent number: 9207672
    Abstract: Systems and methods for integrating quantum computing systems into mobile systems for the purpose of providing real-time, quantum computer-based control of the mobile systems are described. A mobile system includes a data extraction subsystem that extracts data from an external environment of the mobile system and a quantum computing subsystem that receives data from the data extraction subsystem and performs a quantum computing operation in real-time using the data from the data extraction subsystem. A result of the quantum computing operation influences a behavior of the mobile system, such as the navigation of the mobile system or an action performed by the mobile system. The on-board quantum computing subsystem includes on-board quantum computing infrastructure that is adapted to suit the needs and spatial constraints of the mobile system.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: December 8, 2015
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Colin P. Williams, Jeremy P. Hilton
  • Patent number: 9134047
    Abstract: Cryogenic refrigeration employs a pulse tube cryo-cooler and a dilution refrigerator to provide very low temperature cooling, for example, to cool superconducting processors. Continuous cryogenic cycle refrigeration may be achieved using multiple adsorption pumps. Various improvements may include multiple distinct thermal-linking points, evaporation pots with cooling structures, and/or one or more gas-gap heat switches which may be integral to an adsorption pump. A reservoir volume may provide pressure relief when the system is warmed above cryogenic temperature, reducing the mass of the system. Additional heat exchangers and/or separate paths for condensation and evaporation may be provided. Multi-channel connectors may be used, and/or connectors formed of a regenerative material with a high specific heat capacity at cryogenic temperature. Flexible PCBs may provide thermal links to components that embody temperature gradients.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: September 15, 2015
    Assignee: D-Wave Systems Inc.
    Inventors: Randall C. Black, Jeremy P. Hilton, Geordie Rose
  • Publication number: 20150187840
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap connector.
    Type: Application
    Filed: January 5, 2015
    Publication date: July 2, 2015
    Inventors: Eric Ladizinsky, Geordie Rose, Jeremy P. Hilton, Eugene Dantsker, Byong Hyop Oh
  • Publication number: 20150119252
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A niobium/aluminum oxide/niobium trilayer may be formed and individual Josephson Junctions (JJs) formed. A protective cap may protect a JJ during fabrication. A hybrid dielectric may be formed. A superconductive integrated circuit may be formed using a subtractive patterning and/or additive patterning. A superconducting metal layer may be deposited by electroplating and/or polished by chemical-mechanical planarization. The thickness of an inner layer dielectric may be controlled by a deposition process. A substrate may include a base of silicon and top layer including aluminum oxide. Depositing of superconducting metal layer may be stopped or paused to allow cooling before completion. Multiple layers may be aligned by patterning an alignment marker in a superconducting metal layer.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 30, 2015
    Inventors: Eric Ladizinsky, Jeremy P. Hilton, Byong Hyop Oh, Paul I. Bunyk
  • Patent number: 8951808
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap contact connector.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: February 10, 2015
    Assignee: D-Wave Systems Inc.
    Inventors: Eric Ladizinsky, Geordie Rose, Jeremy P. Hilton, Eugene Dantsker, Byong Hyop Oh
  • Publication number: 20140214257
    Abstract: Systems and methods for integrating quantum computing systems into mobile systems for the purpose of providing real-time, quantum computer-based control of the mobile systems are described. A mobile system includes a data extraction subsystem that extracts data from an external environment of the mobile system and a quantum computing subsystem that receives data from the data extraction subsystem and performs a quantum computing operation in real-time using the data from the data extraction subsystem. A result of the quantum computing operation influences a behavior of the mobile system, such as the navigation of the mobile system or an action performed by the mobile system. The on-board quantum computing subsystem includes on-board quantum computing infrastructure that is adapted to suit the needs and spatial constraints of the mobile system.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 31, 2014
    Applicant: D-Wave Systems Inc.
    Inventors: Colin P. Williams, Jeremy P. Hilton
  • Publication number: 20130231249
    Abstract: Cryogenic refrigeration employs a pulse tube cryo-cooler and a dilution refrigerator to provide very low temperature cooling, for example, to cool superconducting processors. Continuous cryogenic cycle refrigeration may be achieved using multiple adsorption pumps. Various improvements may include multiple distinct thermal-linking points, evaporation pots with cooling structures, and/or one or more gas-gap heat switches which may be integral to an adsorption pump. A reservoir volume may provide pressure relief when the system is warmed above cryogenic temperature, reducing the mass of the system. Additional heat exchangers and/or separate paths for condensation and evaporation may be provided. Multi-channel connectors may be used, and/or connectors formed of a regenerative material with a high specific heat capacity at cryogenic temperature. Flexible PCBs may provide thermal links to components that embody temperature gradients.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 5, 2013
    Applicant: D-Wave Systems Inc.
    Inventors: Randall C. Black, Jeremy P. Hilton, Geordie Rose
  • Patent number: 8464542
    Abstract: Cryogenic refrigeration employs a pulse tube cryo-cooler and a dilution refrigerator to provide very low temperature cooling, for example, to cool superconducting processors. Continuous cryogenic cycle refrigeration may be achieved using multiple adsorption pumps. Various improvements may include multiple distinct thermal-linking points, evaporation pots with cooling structures, and/or one or more gas-gap heat switches which may be integral to an adsorption pump. A reservoir volume may provide pressure relief when the system is warmed above cryo genic temperature, reducing the mass of the system. Additional heat exchangers and/or separate paths for condensation and evaporation may be provided. Multi-channel connectors may be used, and/or connectors formed of a regenerative material with a high specific heat capacity at cryogenic temperature. Flexible PCBs may provide thermal links to components that embody temperature gradients.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: June 18, 2013
    Assignee: D-Wave Systems Inc.
    Inventors: Jeremy P. Hilton, Geordie Rose
  • Patent number: 8247799
    Abstract: An integrated circuit for quantum computing may include a superconducting shield to limit magnetic field interactions.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: August 21, 2012
    Assignee: D-Wave Systems Inc.
    Inventors: Paul I. Bunyk, Mark W. Johnson, Jeremy P. Hilton
  • Publication number: 20110089405
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap connector.
    Type: Application
    Filed: February 25, 2010
    Publication date: April 21, 2011
    Applicant: D-WAVE SYSTEMS INC.
    Inventors: Eric Ladizinsky, Geordie Rose, Jeremy P. Hilton, Eugene Dantsker, Byong Hyop Oh
  • Publication number: 20100281885
    Abstract: Cryogenic refrigeration employs a pulse tube cryo-cooler and a dilution refrigerator to provide very low temperature cooling, for example, to cool superconducting processors. Continuous cryogenic cycle refrigeration may be achieved using multiple adsorption pumps. Various improvements may include multiple distinct thermal-linking points, evaporation pots with cooling structures, and/or one or more gas-gap heat switches which may be integral to an adsorption pump. A reservoir volume may provide pressure relief when the system is warmed above cryogenic temperature, reducing the mass of the system. Additional heat exchangers and/or separate paths for condensation and evaporation may be provided. Multi-channel connectors may be used, and/or connectors formed of a regenerative material with a high specific heat capacity at cryogenic temperature. Flexible PCBs may provide thermal links to components that embody temperature gradients.
    Type: Application
    Filed: December 23, 2008
    Publication date: November 11, 2010
    Applicant: D-WAVE SYSTEMS INC.
    Inventors: Randall C. Black, Jeremy P. Hilton, Geordie Rose, Jacob Craig Petroff, Sergey V. Uchaykin
  • Publication number: 20100133514
    Abstract: An integrated circuit for quantum computing may include a superconducting shield to limit magnetic field interactions.
    Type: Application
    Filed: February 10, 2010
    Publication date: June 3, 2010
    Inventors: Paul I. Bunyk, Mark W. Johnson, Jeremy P. Hilton
  • Patent number: 7687938
    Abstract: An integrated circuit for quantum computing may include a superconducting shield to limit magnetic field interactions.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 30, 2010
    Assignee: D-Wave Systems Inc.
    Inventors: Paul I. Bunyk, Mark W. Johnson, Jeremy P. Hilton
  • Patent number: 7613765
    Abstract: A quantum processing apparatus includes a qubit, a superconducting bus, and a controllable coupling mechanism that controllably couples the superconducting bus to the qubit. The controllable coupling mechanism is characterized by a first state in which the superconducting bus and the qubit are capacitively coupled, thereby permitting a coupling operation to be performed between a quantum device, coupled to the superconducting bus, and the qubit. The controllable coupling mechanism is also characterized by a second state in which the superconducting bus and the qubit are capacitively uncoupled such that the qubit and the quantum device are not coupled to each other.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 3, 2009
    Assignee: D-Wave Systems, Inc.
    Inventors: Jeremy P. Hilton, Yutian Ling
  • Patent number: 7613764
    Abstract: A method for performing a coupling operation between a quantum device and a qubit is provided. The quantum device is coupled to a superconducting bus. The method includes placing a controllable coupling mechanism into a coupled state, thereby coupling the quantum device and the qubit to each other. The quantum device or the qubit is then tuned for a first period of time. Then the controllable coupling mechanism is placed into an uncoupled state, thereby decoupling the quantum device and the qubit from each other.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 3, 2009
    Assignee: D-Wave Systems Inc.
    Inventors: Jeremy P. Hilton, Yutian Ling
  • Publication number: 20090008632
    Abstract: An integrated circuit for quantum computing may include a superconducting shield to limit magnetic field interactions.
    Type: Application
    Filed: November 30, 2007
    Publication date: January 8, 2009
    Inventors: Paul I. Bunyk, Mark W. Johnson, Jeremy P. Hilton
  • Patent number: 7335909
    Abstract: A quantum computing structure comprising a superconducting phase-charge qubit, wherein the superconducting phase-charge qubit comprises a superconducting loop with at least one Josephson junction. The quantum computing structure also comprises a first mechanism for controlling a charge of the superconducting phase-charge qubit and a second mechanism for detecting a charge of the superconducting phase-charge qubit, wherein the first mechanism and the second mechanism are each capacitively connected to the superconducting phase-charge qubit.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: February 26, 2008
    Assignee: D-Wave Systems Inc.
    Inventors: Mohammad H. S. Amin, Jeremy P. Hilton, Geordie Rose
  • Patent number: 7332738
    Abstract: A method for reading out the state of a mesoscopic phase device. In the method the mesoscopic phase device is coherently coupled to a mesoscopic charge device using a phase shift device and the quantum state of the mesoscopic charge device is measured. A method for reading out the quantum state of a qubit in a heterogeneous quantum register. The heterogeneous quantum register includes a first plurality of phase qubits and a second plurality of charge qubits. In the method a first phase qubit or a first charge qubit in the heterogeneous quantum register is selected. The first phase qubit or the first charge qubit is coherently connected to a mesoscopic charge device for a duration tc. The quantum state of the mesoscopic charge device is read out after the duration tc has elapsed.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 19, 2008
    Assignee: D-Wave Systems Inc.
    Inventors: Alexandre Blais, Jeremy P. Hilton