Patents by Inventor Jeremy Sean McAllister

Jeremy Sean McAllister has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11892023
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Grant
    Filed: November 5, 2022
    Date of Patent: February 6, 2024
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11867217
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Grant
    Filed: November 5, 2022
    Date of Patent: January 9, 2024
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11846307
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Grant
    Filed: November 5, 2022
    Date of Patent: December 19, 2023
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20230273394
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Application
    Filed: May 7, 2023
    Publication date: August 31, 2023
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11681115
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: June 20, 2023
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20230060471
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Application
    Filed: November 5, 2022
    Publication date: March 2, 2023
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20230058464
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Application
    Filed: November 5, 2022
    Publication date: February 23, 2023
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20230058923
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Application
    Filed: November 5, 2022
    Publication date: February 23, 2023
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20230054293
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Application
    Filed: November 5, 2022
    Publication date: February 23, 2023
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20230053525
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Application
    Filed: November 5, 2022
    Publication date: February 23, 2023
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11550113
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 10, 2023
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11550114
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 10, 2023
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11536927
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: December 27, 2022
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11506238
    Abstract: A thermally stabilized fastener system and method is disclosed. The disclosed system/method integrates a fastener (FAS) incorporating a faster retention head (FRH), fastener retention body (FRB), and fastener retention tip (FRT) to couple a mechanical member stack (MMS) in a thermally stabilized fashion using a fastener retention receiver (FRR). The MMS includes a temperature compensating member (TCM), a first retention member (FRM), and an optional second retention member (SRM). The TCM is constructed using a tailored thermal expansion coefficient (TTC) that permits the TCM to compensate for the thermal expansion characteristics of the FAS, FRM, and SRM such that the force applied by the FRH and FRR portions of the FAS to the MMS is tailored to a specific temperature force profile (TFP) over changes in MMS/FAS temperature. The TCM may be selected with a TTC to achieve a uniform TFP over changes in MMS/FAS temperature.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: November 22, 2022
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11286549
    Abstract: Systems and methods disclosed herein relate to the manufacture of metallic material with a thermal expansion coefficient in a predetermined range, comprising: deforming, a metallic material comprising a first phase and a first thermal expansion coefficient. In response to the deformation, at least some of the first phase is transformed into a second phase, wherein the second phase comprises martensite, and orienting the metallic material in at least one predetermined orientation, wherein the metallic material, subsequent to deformation, comprises a second thermal expansion coefficient, wherein the second thermal expansion coefficient is within a predetermined range, and wherein the thermal expansion is in at least one predetermined direction. In some embodiments, the metallic material comprises the second phase and is thermo-mechanically deformed to orient the grains in at least one direction.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: March 29, 2022
    Inventors: James Alan Monroe, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20220082781
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 17, 2022
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20220011535
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Application
    Filed: September 7, 2021
    Publication date: January 13, 2022
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20210405319
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Publication number: 20210405318
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba
  • Patent number: 11125966
    Abstract: A lens alignment system and method is disclosed. The disclosed system/method integrates one or more lens retaining members/tubes (LRM/LRT) and focal length spacers (FLS) each comprising a metallic material product (MMP) specifically manufactured to have a thermal expansion coefficient (TEC) in a predetermined range via selection of the individual MMP materials and an associated MMP manufacturing process providing for controlled TEC. This controlled LRM/LRT TEC enables a plurality of optical lenses (POL) fixed along a common optical axis (COA) by the LRM/LRT to maintain precise interspatial alignment characteristics that ensure consistent and/or controlled series focal length (SFL) within the POL to generate a thermally neutral optical system (TNOS). Integration of the POL using this LRM/LRT/FLS lens alignment system reduces the overall TNOS implementation cost, reduces the overall TNOS mass, reduces TNOS parts component count, and increases the reliability of the overall optical system.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: September 21, 2021
    Inventors: James Alan Monroe, David Scott Content, Jeremy Sean McAllister, Jay Russell Zgarba