Patents by Inventor Jeremy West Mares

Jeremy West Mares has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9231209
    Abstract: Various embodiments of a composite material are provided. In one embodiment of the present invention a nanometer-scale composite material comprises, by volume, from about 1% to about 99% variable-conductivity material and from about 99% to about 1% conductive material. The composite material exhibits memristive properties when a voltage differential is applied to the nanocomposite. In another embodiment, a variable resistor device includes a first electrode terminal and a second electrode terminal and a nanocomposite in electrical communication with the electrode terminals. The composite material comprises, by volume, from about 1% to about 99% variable-conductivity material and from about 99% to about 1% conductive material. The memristor is tunable as the minimum instantaneous resistance can be altered several orders of magnitude by varying the composition and ratio of the variable-conductivity material and conductive material constituents of the composites.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 5, 2016
    Assignee: Vanderbilt University
    Inventors: Jeremy West Mares, Sharon M. Weiss
  • Publication number: 20140138601
    Abstract: Various embodiments of a composite material are provided. In one embodiment of the present invention a nanometer-scale composite material comprises, by volume, from about 1% to about 99% variable-conductivity material and from about 99% to about 1% conductive material. The composite material exhibits memristive properties when a voltage differential is applied to the nanocomposite. In another embodiment, a variable resistor device includes a first electrode terminal and a second electrode terminal and a nanocomposite in electrical communication with the electrode terminals. The composite material comprises, by volume, from about 1% to about 99% variable-conductivity material and from about 99% to about 1% conductive material. The memristor is tunable as the minimum instantaneous resistance can be altered several orders of magnitude by varying the composition and ratio of the variable-conductivity material and conductive material constituents of the composites.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 22, 2014
    Applicant: Vanderbilt Unviersity
    Inventors: Jeremy West Mares, Sharon M. Weiss