Patents by Inventor Jerod F. Mason

Jerod F. Mason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240030908
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Application
    Filed: June 13, 2023
    Publication date: January 25, 2024
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 11677395
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: June 13, 2023
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Publication number: 20230084412
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Application
    Filed: August 16, 2022
    Publication date: March 16, 2023
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 11418185
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: August 16, 2022
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Publication number: 20220038091
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Application
    Filed: July 13, 2021
    Publication date: February 3, 2022
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Publication number: 20210335857
    Abstract: Field-effect transistor (FET) devices are described herein that include an insulator layer, a plurality of active field-effect transistors (FETs) formed from an active silicon layer implemented over the insulator layer, a substrate layer implemented under the insulator layer, and proximity electrodes for a plurality of the FETs that are each configured to receive a voltage and to generate an electric field between the proximity electrode and a region generally underneath a corresponding active FET. FET devices can be stacked wherein one or more of the FET devices in the stack includes a proximity electrode. The proximity electrodes can be biased together, biased in groups, and/or biased individually.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 28, 2021
    Inventors: Hailing Wang, Hanching Fuh, Dylan Charles Bartle, Jerod F. Mason
  • Patent number: 11063586
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: July 13, 2021
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 11049890
    Abstract: Field-effect transistor (FET) devices are described herein that include an insulator layer, a plurality of active field-effect transistors (FETs) formed from an active silicon layer implemented over the insulator layer, a substrate layer implemented under the insulator layer, and proximity electrodes for a plurality of the FETs that are each configured to receive a voltage and to generate an electric field between the proximity electrode and a region generally underneath a corresponding active FET. FET devices can be stacked wherein one or more of the FET devices in the stack includes a proximity electrode. The proximity electrodes can be biased together, biased in groups, and/or biased individually.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: June 29, 2021
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Hanching Fuh, Dylan Charles Bartle, Jerod F. Mason
  • Publication number: 20210075417
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 11, 2021
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 10865101
    Abstract: Discharge circuits, devices and methods. In some embodiments, a MEMS device can include a substrate and an electromechanical assembly implemented on the substrate. The MEMS device can further include a discharge circuit implemented relative to the electromechanical assembly. The discharge circuit can be configured to provide a preferred arcing path during a discharge condition affecting the electromechanical assembly. The MEMS device can be, for example, a switching device, a capacitance device, a gyroscope sensor device, an accelerometer device, a surface acoustic wave (SAW) device, or a bulk acoustic wave (BAW) device. The discharge circuit can include a spark gap assembly having one or more spark gap elements configured to facilitate the preferred arcing path.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 15, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jerod F. Mason, Dylan Charles Bartle, David Scott Whitefield, David T. Petzold, Dogan Gunes, Paul T. Dicarlo
  • Publication number: 20200389166
    Abstract: Circuits, systems, and methods to compensate for non-linearities associated with a switching circuit are discussed herein. For example, a switch circuit can include a switch arm and a linearizer arm. The switch arm can have a first transistor connected between an input node and an output node. The switch arm can be configured to receive a radio-frequency signal. The linearizer arm can have a second transistor connected to at least one of a gate or a body of the first transistor. The linearizer arm can be configured to compensate a non-linearity effect generated by the switch arm.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 10, 2020
    Inventors: Yu ZHU, Oleksiy KLIMASHOV, Jerod F. MASON, Hanching FUH, Dylan Charles BARTLE, Paul T. DICARLO
  • Patent number: 10862475
    Abstract: Disclosed herein are switching or other active field-effect transistor (FET) configurations that implement independently controlled main-auxiliary branch designs. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of main FET devices in parallel with a plurality of auxiliary FET devices. The circuit assembly can include a plurality of gate bias networks where each controls one or more of the main FET devices. The circuit assembly includes a second plurality of gate bias networks that each controls one or more of the auxiliary FET devices.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: December 8, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 10763847
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of main FETs coupled in series and an auxiliary FET coupled in parallel with an interior FET of the plurality of main FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: September 1, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 10755987
    Abstract: A method for fabricating a radio-frequency device involves providing a substrate structure including a silicon handle wafer, an oxide layer formed on the silicon handle wafer, and an active silicon layer disposed on the oxide layer.
    Type: Grant
    Filed: December 8, 2018
    Date of Patent: August 25, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jerod F. Mason, David Scott Whitefield
  • Publication number: 20200228112
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of main FETs coupled in series and an auxiliary FET coupled in parallel with an interior FET of the plurality of main FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Application
    Filed: December 3, 2019
    Publication date: July 16, 2020
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 10700646
    Abstract: pHEMT-based switch circuits, devices including same, and methods of improving the linearity thereof. In one example, an antenna switch module includes a pHEMT switching circuit connected in series between an input signal terminal and a load terminal, the pHEMT switching circuit including at least one pHEMT configured to produce a first harmonic signal at the load terminal responsive to being driven by an input signal of a fundamental frequency received at the input signal terminal, the first harmonic signal having a first phase, and a gate resistance circuit connected to a gate of the at least one pHEMT and having a resistance value selected to produce a second harmonic signal at the load terminal, the second harmonic signal having a second phase opposite to the first phase.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: June 30, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Fikret Altunkilic, Haki Cebi, Yu Zhu, Cejun Wei, Jerod F. Mason
  • Publication number: 20200195244
    Abstract: Disclosed herein are switching or other active field-effect transistor (FET) configurations that implement independently controlled main-auxiliary branch designs. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of main FET devices in parallel with a plurality of auxiliary FET devices. The circuit assembly can include a plurality of gate bias networks where each controls one or more of the main FET devices. The circuit assembly includes a second plurality of gate bias networks that each controls one or more of the auxiliary FET devices.
    Type: Application
    Filed: November 5, 2019
    Publication date: June 18, 2020
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 10630283
    Abstract: Disclosed herein are switching or other active FET configurations that implement a segmented main-auxiliary branch design. Such designs include a circuit assembly for performing a switching function that includes a branch including a plurality of main-auxiliary pairs coupled in series, wherein each main-auxiliary pair includes a main field-effect transistor (FET) in parallel with an auxiliary FET. The circuit assembly also includes a gate bias network connected to the main FETs and configured to bias the main FETs in a strong inversion region. The circuit assembly also includes an auxiliary bias network connected to the auxiliary FETs and configured to bias the auxiliary FETs in a weak inversion region.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: April 21, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 10630282
    Abstract: Disclosed herein are switching or other active FET configurations that implement a main-auxiliary branch design. Such designs include a circuit assembly for performing a switching function that includes a branch including a main path in parallel with a first auxiliary path and the main path in series with a second auxiliary path. The circuit assembly also includes a first gate bias network connected to the main path. The circuit assembly also includes a second gate bias network connected to the first auxiliary path. The circuit assembly also includes a third gate bias network connected to the second auxiliary path, the second gate bias network and the third gate bias network configured to improve linearity of the switching function.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 21, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Publication number: 20200105803
    Abstract: Field-effect transistor (FET) devices are described herein that include an insulator layer, a plurality of active field-effect transistors (FETs) formed from an active silicon layer implemented over the insulator layer, a substrate layer implemented under the insulator layer, and proximity electrodes for a plurality of the FETs that are each configured to receive a voltage and to generate an electric field between the proximity electrode and a region generally underneath a corresponding active FET. FET devices can be stacked wherein one or more of the FET devices in the stack includes a proximity electrode. The proximity electrodes can be biased together, biased in groups, and/or biased individually.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 2, 2020
    Inventors: Hailing Wang, Hanching Fuh, Dylan Charles Bartle, Jerod F. Mason