Patents by Inventor Jerome A. Truax

Jerome A. Truax has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8692185
    Abstract: Determining a parameter associated with a formation corrected for neutrons produced. At least some of the illustrative embodiments are methods including: disposing a logging tool within a borehole, the borehole penetrates a formation; producing neutrons by a neutron source within the logging tool; detecting neutrons produced by the neutron source, the detecting by a neutron detector; creating an indication of a number of neutrons produced by the neutron source, the indication based only on neutrons detected that have not interacted with other elements before entering the neutron detector; obtaining a count rate of a gamma detector responsive to the production of neutrons by the neutron source; and determining a parameter associated with the formation based on the count rate and on the indication of the number of neutrons produced.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: April 8, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Weijun Guo, Stephen A. Zannoni, Carlos E. Haramboure, Jerome A. Truax
  • Patent number: 8510050
    Abstract: Downhole fluid typing with pulsed neutron logging. A method comprises obtaining at least one capture gamma count rate at a particular borehole depth, calculating a fluid type indicative response value for the borehole depth, and determining at least one fluid type based on the response value. A system comprises a downhole tool, including a neutron source, at least one gamma detector, and a processor coupled to a memory. The memory stores a program that, when executed by the processor, causes the processor to obtain at least one capture gamma count rate for a particular borehole depth. The processor calculates a fluid type indicative response value for the borehole depth and determines at least one fluid type based on the response value.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 13, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jerome Truax, Steve Zannoni, Daniel Dorffer, Weijun Guo
  • Patent number: 8440960
    Abstract: Water salinity and water saturation measurements are enhanced by systems and methods for logging salt concentration in formation fluids. Some tool embodiments augment a neutron porosity logging tool with a gamma ray detector configured to measure the rate at which hydrogen nuclei capture neutrons from a neutron source. The ratio of the hydrogen-capture gamma ray count rate to the neutron flux can be combined with a porosity measurement to derive the salt concentration in the formation fluids. When the salt concentration is further combined with resistivity measurements, the water salinity and water saturation can be derived. Some tool embodiments employ a continuous neutron source, Helium-3 filled neutron detectors, and a gamma ray detector that is the same distance from the source as one of the neutron detectors.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 14, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Moustafa E. Oraby, Jerome A. Truax
  • Publication number: 20130105680
    Abstract: Determining a parameter associated with a formation corrected for neutrons produced. At least some of the illustrative embodiments are methods including: disposing a logging tool within a borehole, the borehole penetrates a formation; producing neutrons by a neutron source within the logging tool; detecting neutrons produced by the neutron source, the detecting by a neutron detector; creating an indication of a number of neutrons produced by the neutron source, the indication based only on neutrons detected that have not interacted with other elements before entering the neutron detector; obtaining a count rate of a gamma detector responsive to the production of neutrons by the neutron source; and determining a parameter associated with the formation based on the count rate and on the indication of the number of neutrons produced.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 2, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Weijun Guo, Stephen A. Zannoni, Carlos E. Haramboure, Jerome A. Truax
  • Patent number: 8346481
    Abstract: Determining a value indicative of gas saturation of a formation. At least some of the illustrative embodiments are methods including obtaining an inelastic count rate and a capture count rate of a gamma detector for a particular borehole depth, calculating a ratio of an inelastic count rate to a capture count rate for the particular borehole depth, determining a value indicative of gas saturation based on the ratio of the inelastic count rate to the capture count rate for the particular borehole depth, repeating the obtaining, calculating and determining for a plurality of borehole depths, and producing a plot of the value indicative of gas saturation of the formation as a function of borehole depth.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: January 1, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Larry A. Jacobson, Weijun Guo, Jerome A. Truax, Daniel F. Dorffer
  • Patent number: 8044342
    Abstract: A method and system for calculating extent of a formation treatment material in a formation. At least some of the illustrative embodiments are methods comprising releasing neutrons into a formation from a neutron source of a logging tool within a borehole having an axis, sensing energies of gammas produced by materials in the formation, the sensing by a gamma detector on the logging tool, generating a measured spectrum of the energies of the gammas sensed by the gamma detector, determining elemental concentrations of materials in the formation based on a basis spectrum, and calculating axial extent of a formation treatment material in the formation in relation to the axis of the borehole based on the elemental concentrations of at least some materials in the formation.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 25, 2011
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James E. Galford, Larry A. Jacobson, Jerome A. Truax
  • Publication number: 20110204217
    Abstract: Water salinity and water saturation measurements are enhanced by systems and methods for logging salt concentration in formation fluids. Some tool embodiments augment a neutron porosity logging tool with a gamma ray detector configured to measure the rate at which hydrogen nuclei capture neutrons from a neutron source. The ratio of the hydrogen-capture gamma ray count rate to the neutron flux can be combined with a porosity measurement to derive the salt concentration in the formation fluids. When the salt concentration is further combined with resistivity measurements, the water salinity and water saturation can be derived. Some tool embodiments employ a continuous neutron source, Helium-3 filled neutron detectors, and a gamma ray detector that is the same distance from the source as one of the neutron detectors.
    Type: Application
    Filed: September 30, 2008
    Publication date: August 25, 2011
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Moustafa E. Oraby, Jerome A. Truax
  • Publication number: 20110202276
    Abstract: Downhole fluid typing with pulsed neutron logging. A method comprises obtaining gamma count rates at a particular borehole depth; calculating a fluid type indicative response value for the borehole depth; determining at least one fluid type based on the response value for the particular borehole depth; and producing a display of the at least one fluid type corresponding to the borehole depth. A system comprises a downhole tool comprising a neutron source and at least one gamma detector; gamma count rates produced due to gamma arrivals at the gamma detector(s); and a processor coupled to a memory, wherein the memory stores a program that, when executed by the processor, causes the processor to: calculate a fluid type indicative response value for a particular borehole depth based on the gamma count rates; and determine at least one fluid type based on the response value for the particular borehole depth.
    Type: Application
    Filed: September 28, 2009
    Publication date: August 18, 2011
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jerome Truax, Steve Zannoni, Daniel Dorffer, Weijun Guo
  • Publication number: 20100292927
    Abstract: Determining a value indicative of gas saturation of a formation. At least some of the illustrative embodiments are methods including obtaining an inelastic count rate and a capture count rate of a gamma detector for a particular borehole depth, calculating a ratio of an inelastic count rate to a capture count rate for the particular borehole depth, determining a value indicative of gas saturation based on the ratio of the inelastic count rate to the capture count rate for the particular borehole depth, repeating the obtaining, calculating and determining for a plurality of borehole depths, and producing a plot of the value indicative of gas saturation of the formation as a function of borehole depth.
    Type: Application
    Filed: December 15, 2008
    Publication date: November 18, 2010
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Larry A. Jacobson, Weijun Guo, Jerome A. Truax, Daniel F. Dorffer
  • Publication number: 20100224773
    Abstract: A method and system for calculating extent of a formation treatment material in a formation. At least some of the illustrative embodiments are methods comprising releasing neutrons into a formation from a neutron source of a logging tool within a borehole having an axis, sensing energies of gammas produced by materials in the formation, the sensing by a gamma detector on the logging tool, generating a measured spectrum of the energies of the gammas sensed by the gamma detector, determining elemental concentrations of materials in the formation based on a basis spectrum, and calculating axial extent of a formation treatment material in the formation in relation to the axis of the borehole based on the elemental concentrations of at least some materials in the formation.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 9, 2010
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: James E. Galford, Larry A. Jacobson, Jerome A. Truax
  • Patent number: 7772545
    Abstract: Nuclear logging tool. At least some of the illustrative embodiments are methods comprising placing a logging tool within a borehole proximate to an earth formation, releasing energetic neutrons from the logging tool, and receiving (at a detector within the logging tool) gamma returns indicative of interactions of the neutrons with elements of the logging tool and elements of the formation, and the gammas indicative of neutron interactions with elements of the logging tool are substantially free from gammas indicative of interactions with iron atoms.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: August 10, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James E. Galford, Andrew A. Hrametz, Jerome A. Truax
  • Publication number: 20100019138
    Abstract: Nuclear logging tool. At least some of the illustrative embodiments are methods comprising placing a logging tool within a borehole proximate to an earth formation, releasing energetic neutrons from the logging tool, and receiving (at a detector within the logging tool) gamma returns indicative of interactions of the neutrons with elements of the logging tool and elements of the formation, and the gammas indicative of neutron interactions with elements of the logging tool are substantially free from gammas indicative of interactions with iron atoms.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 28, 2010
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: James E. Galford, Andrew A. Hrametz, Jerome A. Truax
  • Patent number: 7491929
    Abstract: A method and related system of pulsed-neutron logging. At least some of the illustrative embodiments are a method comprising releasing neutrons from a neutron source of a logging tool within a borehole, detecting gamma rays by a sensor on the logging tool (the gamma rays produced by capture of at least some of the neutrons, and wherein the detecting produces sensed gamma rays), determining from the sensed gamma rays a point in time at which gamma rays produced within the borehole reach a predetermined threshold, and using the sensed gamma rays detected after the point in time to determine a parameter of a formation surrounding the borehole.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: February 17, 2009
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Jerome Truax
  • Publication number: 20070252080
    Abstract: A method and related system of pulsed-neutron logging. At least some of the illustrative embodiments are a method comprising releasing neutrons from a neutron source of a logging tool within a borehole, detecting gamma rays by a sensor on the logging tool (the gamma rays produced by capture of at least some of the neutrons, and wherein the detecting produces sensed gamma rays), determining from the sensed gamma rays a point in time at which gamma rays produced within the borehole reach a predetermined threshold, and using the sensed gamma rays detected after the point in time to determine a parameter of a formation surrounding the borehole.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Jerome Truax
  • Patent number: 6918293
    Abstract: We disclose density measurement methods that are accurate over an extended range of standoff distances. One method embodiment includes: a) obtaining a standoff distance, a near detector count rate, and a far detector count rate; b) determining a formation density measurement using near and far detector count rates when the standoff distance is less than a predetermined value; and c) determining the formation density measurement using just the far detector count rate and the standoff distance measurement when the standoff distance is greater than the predetermined value. The method may further include calculating a calibration parameter when the standoff distance is less than the predetermined value. The calibration parameter serves to calibrate a standoff-based correction to the far detector count rate, enabling accurate formation density measurements at large standoff distances. The measurements are made with a rotating logging tool, causing the standoff distance to cycle between large and small values.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: July 19, 2005
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Gordon L. Moake, Jerome A. Truax
  • Publication number: 20040200274
    Abstract: We disclose density measurement methods that are accurate over an extended range of standoff distances. One method embodiment includes: a) obtaining a standoff distance, a near detector count rate, and a far detector count rate; b) determining a formation density measurement using near and far detector count rates when the standoff distance is less than a predetermined value; and c) determining the formation density measurement using just the far detector count rate and the standoff distance measurement when the standoff distance is greater than the predetermined value. The method may further include calculating a calibration parameter when the standoff distance is less than the predetermined value. The calibration parameter serves to calibrate a standoff-based correction to the far detector count rate, enabling accurate formation density measurements at large standoff distances. The measurements are made with a rotating logging tool, causing the standoff distance to cycle between large and small values.
    Type: Application
    Filed: April 9, 2003
    Publication date: October 14, 2004
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Gordon L. Moake, Jerome A. Truax
  • Patent number: 5539225
    Abstract: Measurement-while-drilling apparatus includes a 14 MeV neutron accelerator, a near-spaced neutron detector which primarily senses source neutrons and whose output is proportional to source strength, one or more intermediately-spaced epithermal neutron detectors eccentered against the drill collar wall and primarily responsive to formation hydrogen concentration, and a third far-spaced radiation detector, either gamma ray or neutron, primarily responsive to formation density. The intermediately-spaced and far-spaced detector outputs, normalized by the near-spaced detector output, are combined to provide measurements of porosity, density and lithology and to detect gas. A thermal neutron detector and/or a gamma ray detector may also be provided at intermediate spacings to provide additional information of interest, such as standoff measurements and spectral analysis of formation composition. Tool outputs are related to the angular or azimuthal orientation of the measurement apparatus in the borehole.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: July 23, 1996
    Assignee: Schlumberger Technology Corporation
    Inventors: William A. Loomis, Kenneth E. Stephenson, Jerome A. Truax, Wolfgang P. Ziegler, S. Zema Chowdhuri, Benoit Couet, Michael L. Evans, Paul Albats, Bradley A. Roscoe, Jacques M. Holenka, Keith A. Moriarty, William R. Sloan
  • Patent number: 5171986
    Abstract: The energy-to-channel response of a bismuth germanate scintillator (BGO) gamma ray spectra measurement system is calibrated by use of the 10.2 MeV gamma ray peak originating from epithermal neutron capture within the BGO crystal as a calibration reference line. The 10.2 MeV peak is located by successively fitting the detected spectrum to the combination of a gaussian-shaped gamma ray peak and an exponentially-shaped background, beginning at the upper end of the spectrum and successively sliding the fitting window downwards until the peak is reached. Once the 10.2 MeV peak has been located, the spectral gain is adjusted to shift the peak to an assigned calibration channel location adjacent the upper end of the overall spectral window.
    Type: Grant
    Filed: September 27, 1991
    Date of Patent: December 15, 1992
    Assignee: Schlumberger Technology Corporation
    Inventors: William A. Loomis, James A. Grau, Jerome A. Truax
  • Patent number: RE36012
    Abstract: Measurement-while-drilling apparatus includes a 14 MeV neutron accelerator, a near-spaced neutron detector which primarily senses source neutrons and whose output is proportional to source strength, one or more intermediately-spaced epithermal neutron detectors eccentered against the drill collar wall and primarily responsive to formation hydrogen concentration, and a third far-spaced radiation detector, either gamma ray or neutron, primarily responsive to formation density. The intermediately-spaced and far-spaced detector outputs, normalized by the near-spaced detector output, are combined to provide measurements of porosity, density and lithology and to detect gas. A thermal neutron detector and/or a gamma ray detector may also be provided at intermediate spacings to provide additional information of interest, such as standoff measurements and spectral analysis of formation composition. Tool outputs are related to the angular or azimuthal orientation of the measurement apparatus in the borehole.
    Type: Grant
    Filed: September 25, 1996
    Date of Patent: December 29, 1998
    Assignee: Schlumberger Technology Corporation
    Inventors: William A. Loomis, Kenneth E. Stephenson, Jerome A. Truax, Wolfgang P. Ziegler, S. Zema Chowdhuri, Benoit Couet, Michael L. Evans, Paul Albats, Bradley A. Roscoe, Jacques M. Holenka, Keith A. Moriarty, William R. Sloan