Patents by Inventor Jerome Arenson

Jerome Arenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080043924
    Abstract: The invention is directed to an x-ray flux management device that adaptively attenuates an x-ray beam to limit the incident flux reaching a subject and radiographic detectors in potentially high-flux areas while not affecting the incident flux and detector measurements in low-flux regions. While the invention is particularly well-suited for CT, the invention is also applicable with other x-ray imaging systems. In addition to reducing the required detector system dynamic range, the present invention provides an added advantage of reducing radiation dose.
    Type: Application
    Filed: October 12, 2007
    Publication date: February 21, 2008
    Inventors: Jerome Arenson, David Ruimi, Oded Meirav, Robert Armstrong
  • Publication number: 20070206720
    Abstract: The present invention is a directed method and apparatus for collimating a radiation beam such that the full intensity of the radiation beam does not impinge detectors of a radiation detector assembly that are particularly susceptible to saturation or over-ranging. This collimation can be dynamically adjusted on a per view basis using empirical or scout scan data.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 6, 2007
    Inventors: Jerome Arenson, David Ruimi, Oded Meirav, Robert Armstrong
  • Publication number: 20070140409
    Abstract: An adaptive CT data acquisition system and technique is presented whereby radiation emitted for CT data acquisition is dynamically controlled to limit exposure to those detectors of a CT detector assembly that may be particularly susceptible to saturation during a given data acquisition. The data acquisition technique recognizes that for a given subject size and position that pre-subject filtering and collimating of a radiation beam may be insufficient to completely prevent detector saturation. Therefore, the present invention includes implementation of a number of CT data correction techniques for correcting otherwise unusable data of a saturated CT detector. These data correction techniques include a nearest neighbor correction, off-centered phantom correction, off-centered synthetic data correction, scout data correction, planar radiogram correction, and a number of others.
    Type: Application
    Filed: January 25, 2007
    Publication date: June 21, 2007
    Inventors: Jerome Arenson, David Ruimi, Evgeny Drapkin, Dmitry Samsonov, Bruno De Man, Samit Basu
  • Publication number: 20070116173
    Abstract: An adaptive CT data acquisition system and technique is presented whereby radiation emitted for CT data acquisition is dynamically controlled to limit exposure to those detectors of a CT detector assembly that may be particularly susceptible to saturation during a given data acquisition. The data acquisition technique recognizes that for a given subject size and position that pre-subject filtering and collimating of a radiation beam may be insufficient to completely prevent detector saturation. Therefore, the present invention includes implementation of a number of CT data correction techniques for correcting otherwise unusable data of a saturated CT detector. These data correction techniques include a nearest neighbor correction, off-centered phantom correction, off-centered synthetic data correction, scout data correction, planar radiogram correction, and a number of others.
    Type: Application
    Filed: January 25, 2007
    Publication date: May 24, 2007
    Inventors: Jerome Arenson, Evgeny Drapkin, Yanfeng Du, Lev Greenberg, Oded Meirav, David Ruimi, John Tkaczyk, Xiaoye Wu
  • Publication number: 20070116181
    Abstract: The invention is directed to an x-ray flux management device that adaptively attenuates an x-ray beam to limit the incident flux reaching a subject and radiographic detectors in potentially high-flux areas while not affecting the incident flux and detector measurements in low-flux regions. While the invention is particularly well-suited for CT, the invention is also applicable with other x-ray imaging systems. In addition to reducing the required detector system dynamic range, the present invention provides an added advantage of reducing radiation dose.
    Type: Application
    Filed: January 11, 2007
    Publication date: May 24, 2007
    Inventors: Jerome Arenson, David Ruimi, Oded Meirav, Robert Armstrong
  • Publication number: 20070104320
    Abstract: The invention is directed to an x-ray flux management device that adaptively attenuates an x-ray beam to limit the incident flux reaching a subject and radiographic detectors in potentially high-flux areas while not affecting the incident flux and detector measurements in low-flux regions. While the invention is particularly well-suited for CT, the invention is also applicable with other x-ray imaging systems. In addition to reducing the required detector system dynamic range, the present invention provides an added advantage of reducing radiation dose.
    Type: Application
    Filed: November 10, 2005
    Publication date: May 10, 2007
    Inventors: Jerome Arenson, David Ruimi, Oded Meirav, Robert Armstrong
  • Publication number: 20070100234
    Abstract: Methods and systems for displaying an instrument in a region of interest are provided. The imaging system includes a multi-slice detector, a processor coupled to the multi-slice detector, and a display configured to display reconstructed images. The processor is configured to receive a plurality of multi-slice scan data, identify at least a portion of an instrument in at least one slice of the plurality of multi-slice scan data, and display the identified instrument portion with an indicator associated with the at least one slice.
    Type: Application
    Filed: October 27, 2005
    Publication date: May 3, 2007
    Inventors: Jerome Arenson, David Ruimi, Oded Meirav, Haim Gelman
  • Publication number: 20070098139
    Abstract: A method and system of counting and tagging radiation energy received by a radiation detector is presented. The method and system are designed to dynamically control the sampling window or shaping time characteristics of a photon counting detector to accommodate variations of flux experienced by the detector so as to preserve optimum detector performance and prevent saturation during high flux conditions.
    Type: Application
    Filed: December 4, 2006
    Publication date: May 3, 2007
    Inventors: David Hoffman, Jerome Arenson
  • Patent number: 7149278
    Abstract: A method and system of counting and tagging radiation energy received by a radiation detector is presented. The method and system are designed to dynamically control the sampling window or shaping time characteristics of a photon counting detector to accommodate variations of flux experienced by the detector so as to preserve optimum detector performance and prevent saturation during high flux conditions.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: December 12, 2006
    Assignee: General Electric Company
    Inventors: Jerome Arenson, David M. Hoffman
  • Publication number: 20060109950
    Abstract: An adaptive CT data acquisition system and technique is presented whereby radiation emitted for CT data acquisition is dynamically controlled to limit exposure to those detectors of a CT detector assembly that may be particularly susceptible to saturation during a given data acquisition. The data acquisition technique recognizes that for a given subject size and position that pre-subject filtering and collimating of a radiation beam may be insufficient to completely prevent detector saturation. Therefore, the present invention includes implementation of a number of CT data correction techniques for correcting otherwise unusable data of a saturated CT detector. These data correction techniques include a nearest neighbor correction, off-centered phantom correction, off-centered synthetic data correction, scout data correction, planar radiogram correction, and a number of others.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 25, 2006
    Inventors: Jerome Arenson, John Tkaczyk, David Ruimi, Oded Meirav, Evgeny Drapkin, Dmitry Samsonov, Lev Greenberg, Bruno De Man, Samit Basu, Xiaoye Wu, Yangeng Du
  • Publication number: 20060104496
    Abstract: Methods and systems for controlling an X-ray imaging system. The method for controlling an X-ray imaging system includes acquiring a plurality of subviews of patient attenuation data wherein a first set of subviews of patient attenuation data is acquired at a first radiation flux level and a second set of subviews of patient attenuation data is acquired at a second radiation flux level. The first radiation flux level is different than the second radiation flux level. The method further includes combining the first set of subviews of patient attenuation data and the second set of subviews of patient attenuation data to form corrected views for subsequent image generation.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 18, 2006
    Inventors: Jerome Arenson, David Ruimi, Oded Meirav, Robert Armstrong
  • Publication number: 20060092615
    Abstract: An interconnect structure for use in an electronic device, wherein the interconnect structure comprises a first substrate comprising a flexible material, wherein the first substrate comprises a front side and a back side, and wherein the first substrate is configured to receive a sensor on the front side; and a second substrate coupled to the back side of the first substrate and comprising a rigid material. A detector module for use in an imaging system comprises the aforementioned interconnect structure.
    Type: Application
    Filed: October 28, 2004
    Publication date: May 4, 2006
    Inventors: William Burdick, James Rose, John Tkaczyk, Oded Meirav, Jerome Arenson, David Hoffman
  • Publication number: 20060056576
    Abstract: A method and system of counting and tagging radiation energy received by a radiation detector is presented. The method and system are designed to dynamically control the sampling window or shaping time characteristics of a photon counting detector to accommodate variations of flux experienced by the detector so as to preserve optimum detector performance and prevent saturation during high flux conditions.
    Type: Application
    Filed: September 10, 2004
    Publication date: March 16, 2006
    Inventors: David Hoffman, Jerome Arenson