Patents by Inventor Jerome Brett Lasky

Jerome Brett Lasky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7696586
    Abstract: A structure. The structure may include a layer of cobalt disilicide that is substantially free of cobalt monosilicide and there is substantially no stringer of an oxide of titanium on the layer of cobalt disilicide. The structure may include a substrate that includes: an insulated-gate field effect transistor (FET) that includes a source, a drain, and a gate; a first layer of cobalt disilicide on the source, said first layer having substantially no cobalt monosilicide, and said first layer having substantially no stringer of an oxide of titanium thereon; a second layer of cobalt disilicide on the drain, said second layer having substantially no cobalt monosilicide having substantially no stringer of an oxide of titanium thereon; and a third layer of cobalt disilicide on the gate, said third layer having substantially no cobalt monosilicide and having substantially no stringer of an oxide of titanium thereon.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: David Paul Agnello, Mary Conroy Bushey, Donna K. Johnson, Jerome Brett Lasky, Peter James Lindgren, Kirk David Peterson
  • Patent number: 7492048
    Abstract: Structures and method for forming the same. The semiconductor structure comprises a photo diode that includes a first semiconductor region and a second semiconductor region. The first and second semiconductor regions are doped with a first and second doping polarities, respectively, and the first and second doping polarities are opposite. The semiconductor structure also comprises a transfer gate that comprises (i) a first extension region, (ii) a second extension region, and (iii) a floating diffusion region. The first and second extension regions are in direct physical contact with the photo diode and the floating diffusion region, respectively. The semiconductor structure further comprises a charge pushing region. The charge pushing region overlaps the first semiconductor region and does not overlap the floating diffusion region. The charge pushing region comprises a transparent and electrically conducting material.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Jeffrey Peter Gambino, Mark David Jaffe, Jeffrey Bowman Johnson, Jerome Brett Lasky, Richard John Rassel
  • Publication number: 20080296706
    Abstract: A structure. The structure may include a layer of cobalt disilicide that is substantially free of cobalt monosilicide and there is substantially no stringer of an oxide of titanium on the layer of cobalt disilicide. The structure may include a substrate that includes: an insulated-gate field effect transistor (FET) that includes a source, a drain, and a gate; a first layer of cobalt disilicide on the source, said first layer having substantially no cobalt monosilicide, and said first layer having substantially no stringer of an oxide of titanium thereon; a second layer of cobalt disilicide on the drain, said second layer having substantially no cobalt monosilicide having substantially no stringer of an oxide of titanium thereon; and a third layer of cobalt disilicide on the gate, said third layer having substantially no cobalt monosilicide and having substantially no stringer of an oxide of titanium thereon.
    Type: Application
    Filed: July 18, 2008
    Publication date: December 4, 2008
    Inventors: David Paul Agnello, Mary Conroy Bushey, Donna K. Johnson, Jerome Brett Lasky, Peter James Lindgren, Kirk David Peterson
  • Patent number: 7411258
    Abstract: A structure relating to removal of an oxide of titanium generated as a byproduct of a process that forms cobalt disilicide within an insulated-gate field effect transistor (FET). The structure may comprise a layer of cobalt disilicide that is substantially free of cobalt monosilicide, with substantially no stringer of an oxide of titanium on the layer of cobalt disilicide. The structure may alternatively comprise a layer of cobalt disilicide, a patch of an oxide of titanium, and a reagent in contact with the patch at a temperature and for a period of time. The layer is substantially free of cobalt monosilicide. The patch is on the layer of cobalt disilicide. The reagent is adapted to remove the patch within the period of time. The reagent does not chemically react with the layer of cobalt disilicide, and the reagent comprises water, ammonium hydroxide, and hydrogen peroxide.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: David Paul Agnello, Mary Conroy Bushey, Donna K. Johnson, Jerome Brett Lasky, Peter James Lindgren, Kirk David Peterson
  • Publication number: 20030058675
    Abstract: An SRAM memory cell made with increased stability using SOI technology is provided. Increased stability occurs because of raising the threshold voltage of the transfer nfets connected to the word line. Preferably the increase of threshold voltage is achieved using boron ion implantation.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 27, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony Gus Aipperspach, Andres Bryant, Todd Alan Christensen, Dennis T. Cox, Jerome Brett Lasky, John Edward Sheets, Francis Roger White
  • Publication number: 20020004303
    Abstract: A method for removing a formation of oxide of titanium that is generated as a by product of a process that forms cobalt disilicide within an insulated-gate field effect transistor (FET). The method applies a chemical reagent to the FET at a predetermined temperature, and for a predetermined period of time, necessary for removing the formation, wherein the reagent does not chemically react with the cobalt disilicide. A reagent that accomplishes this task comprises water (H2O), ammonium hydroxide (NH4OH), and hydrogen peroxide (H2O2), wherein the NH4OH and the H2O2 each comprise approximately 4% of the total reagent volume. An effective temperature is 65 ° C. combined with a 3 minute period of application.
    Type: Application
    Filed: August 27, 2001
    Publication date: January 10, 2002
    Inventors: David Paul Agnello, Mary Conroy Bushey, Donna K. Johnson, Jerome Brett Lasky, Peter James Lindgren, Kirk David Peterson
  • Patent number: 6335294
    Abstract: A method for removing a formation of oxide of titanium that is generated as a byproduct of a process that forms cobalt disilicide within an insulated-gate field effect transistor (FET). The method applies a chemical reagent to the FET at a predetermined temperature, and for a predetermined period of time, necessary for removing the formation, wherein the reagent does not chemically react with the cobalt disilicide. A reagent that accomplishes this task comprises water (H2O), ammonium hydroxide (NH4OH), and hydrogen peroxide (H2O2), wherein the NH4OH and the H2O2 each comprise approximately 4% of the total reagent volume. An effective temperature is 65° C. combined with a 3 minute period of application.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: January 1, 2002
    Assignee: International Business Machines Corporation
    Inventors: David Paul Agnello, Mary Conroy Bushey, Donna K. Johnson, Jerome Brett Lasky, Peter James Lindgren, Kirk David Peterson
  • Patent number: 6328794
    Abstract: A method of providing a predetermined level and state of stress in a film deposited on a surface of a substrate. In one embodiment, a layer of crystalline material is deposited on a surface of a substrate and then a layer of amorphous material is deposited on the layer of crystalline material. Then, the layers are heated, causing the amorphous material to crystallize. Such crystallization reduces, or even changes the state of, stress in the amorphous layer, which in turn alters the forces applied by the layer to adjacent regions of the substrate. The method may be used for filling a deep-trench capacitor of the type used in trench-storage DRAMs.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: December 11, 2001
    Assignee: International Business Machines Corporation
    Inventors: Donald Walter Brouillette, Timothy Charles Krywanczyk, Jerome Brett Lasky, Rick Lawrence Mohler, Wolfgang Otto Rauscher
  • Patent number: 6140171
    Abstract: A FET device comprising a semiconductor substrate; diffusion regions in the substrate separated by a channel region; a gate overlapping the channel region and a portion of the diffusion regions and separated from the substrate by a gate dielectric; and a sidewall dielectric on a sidewall of the gate; and a sidewall spacer conductor on the sidewall dielectric contacting one of the diffusion regions but not both of the diffusion regions of one device is provided along with a method for its fabrication. The conductive spacer connects diffusions of adjacent devices that share a common gate electrode.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: October 31, 2000
    Assignee: International Business Machines Corporation
    Inventors: Archibald John Allen, Jerome Brett Lasky, Randy William Mann, John Joseph Pekarik, Jed Hickory Rankin, Edward William Sengle, Francis Roger White
  • Patent number: 6022766
    Abstract: An improved field effect transistor (FET) structure is disclosed. It comprises a first insulator layer containing at least one primary level stud extending through the layer; an undoped cap oxide layer disposed over the insulator layer and abutting the upper region of each stud; a primary level thin film transistor (TFT) disposed over the undoped cap oxide layer; and a planarized oxide layer disposed over the TFT. Multiple TFT's can be stacked vertically, and connected to other levels of studs and metal interconnection layers. Another embodiment of the invention includes the use of a protective interfacial cap over the surface of tungsten-type studs. The FET structure can serve as a component of a static random access memory (SRAM) cell. Related processes are also disclosed.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: February 8, 2000
    Assignee: International Business Machines, Inc.
    Inventors: Bomy Able Chen, Subhash Balakrishna Kulkarni, Jerome Brett Lasky, Randy William Mann, Edward Joseph Nowak, Werner Alois Rausch, Francis Roger White
  • Patent number: 5913125
    Abstract: A method of providing a predetermined level and state of stress in a film deposited on a surface of a substrate. In one embodiment, a layer of crystalline material is deposited on a surface of a substrate and then a layer of amorphous material is deposited on the layer of crystalline material. Then, the layers are heated, causing the amorphous material to crystallize. Such crystallization reduces, or even changes the state of, stress in the amorphous layer, which in turn alters the forces applied by the layer to adjacent regions of the substrate. The method may be used for filling a deep-trench capacitor of the type used in trench-storage DRAMs.
    Type: Grant
    Filed: February 27, 1996
    Date of Patent: June 15, 1999
    Assignee: International Business Machines Corporation
    Inventors: Donald Walter Brouillette, Timothy Charles Krywanczyk, Jerome Brett Lasky, Rick Lawrence Mohler, Wolfgang Otto Rauscher
  • Patent number: 5894169
    Abstract: A semiconductor device having low-leakage borderless contacts is formed by etching contact openings adjacent first and second electronic elements of opposite dopant type, conformally depositing a thin doped polysilicon layer, protecting the electronic element of similar dopant-type, removing the thin doped polysilicon layer adjacent the oppositely doped electronic element diffusing dopant from said polysilicon layer into a side wall of the electronic element of similar dopant-type, and then depositing tungsten within the contact openings.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: April 13, 1999
    Assignee: International Business Machines Corporation
    Inventors: John Howard Givens, Charles William Koburger, III, Jerome Brett Lasky