Patents by Inventor Jerome F. Duluk

Jerome F. Duluk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9082212
    Abstract: Techniques are disclosed for dispatching pixel information in a graphics processing pipeline. A fragment processing unit in the graphics processing pipeline generates a pixel that includes multiple samples based on a portion of a graphics primitive received by a thread. The fragment processing unit calculates a set of source values, where each source value corresponds to a different sample of the pixel. The fragment processing unit retrieves a set of destination values from a render target, where each destination value corresponds to a different source value. The fragment processing unit blends each source value with a corresponding destination value to create a set of final values, and creates one or more dispatch messages to store the set of final values in a set of output registers. One advantage of the disclosed techniques is that pixel shader programs perform per-sample operations with increased efficiency.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 14, 2015
    Assignee: NVIDIA Corporation
    Inventors: Jerome F. Duluk, Jr., Jesse David Hall
  • Patent number: 9069609
    Abstract: One embodiment of the present invention sets forth a technique for assigning a compute task to a first processor included in a plurality of processors. The technique involves analyzing each compute task in a plurality of compute tasks to identify one or more compute tasks that are eligible for assignment to the first processor, where each compute task is listed in a first table and is associated with a priority value and an allocation order that indicates relative time at which the compute task was added to the first table. The technique further involves selecting a first task compute from the identified one or more compute tasks based on at least one of the priority value and the allocation order, and assigning the first compute task to the first processor for execution.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: June 30, 2015
    Assignee: NVIDIA CORPORATION
    Inventors: Karim M. Abdalla, Lacky V. Shah, Jerome F. Duluk, Jr., Timothy John Purcell, Tanmoy Mandal, Gentaro Hirota
  • Publication number: 20150178879
    Abstract: A system, method, and computer program product are provided for allocating processor resources to process compute workloads and graphics workloads substantially simultaneously. The method includes the steps of allocating a plurality of processing units to process tasks associated with a graphics pipeline, receiving a request to allocate at least one processing unit in the plurality of processing units to process tasks associated with a compute pipeline, and reallocating the at least one processing unit to process tasks associated with the compute pipeline.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: NVIDIA CORPORATION
    Inventors: Gregory S. Palmer, Jerome F. Duluk, JR., Karim Maher Abdalla, Jonathon S. Evans, Adam Clark Weitkemper, Lacky Vasant Shah, Philip Browning Johnson, Gentaro Hirota
  • Patent number: 9013498
    Abstract: A system and method for tracking and reporting texture map levels of detail that are computed during graphics processing allows for efficient management of texture map storage. Minimum and/or maximum pre-clamped texture map levels of detail values are tracked by a graphics processor and an array stored in memory is updated to report the minimum and/or maximum values for use by an application program. The minimum and/or maximum values may be used to determine the active set of texture map levels of detail that is loaded into graphics memory.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 21, 2015
    Assignee: NVIDIA Corporation
    Inventors: John S. Montrym, Andrew J. Tao, Henry P. Moreton, Emmett M. Kilgariff, Cass W. Everitt, Alexander L. Minkin, Eric Anderson, Yan Yan Tang, Jerome F. Duluk, Jr.
  • Publication number: 20150097847
    Abstract: One embodiment of the present invention includes a memory management unit (MMU) that is configured to manage sparse mappings. The MMU processes requests to translate virtual addresses to physical addresses based on page table entries (PTEs) that indicate a sparse status. If the MMU determines that the PTE does not include a mapping from a virtual address to a physical address, then the MMU responds to the request based on the sparse status. If the sparse status is active, then the MMU determines the physical address based on whether the type of the request is a write operation and, subsequently, generates an acknowledgement of the request. By contrast, if the sparse status is not active, then the MMU generates a page fault. Advantageously, the disclosed embodiments enable the computer system to manage sparse mappings without incurring the performance degradation associated with both page faults and conventional software-based sparse mapping management.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: NVIDIA CORPORATION
    Inventors: Jonathan DUNAISKY, Henry Packard MORETON, Jeffrey A. BOLZ, Yury Y. URALSKY, James Leroy DEMING, Rui M. BASTOS, Patrick R. BROWN, Amanpreet GREWAL, Christian AMSINCK, Poornachandra RAO, Jerome F. DULUK, JR., Andrew J. TAO
  • Publication number: 20150084974
    Abstract: One embodiment sets forth a method for allocating memory to surfaces. A software application specifies surface data, including interleaving state data. Based on the interleaving state data, a surface access unit bloats addressees derived from discrete coordinates associated with the surface, creating a bloated virtual address space with a predictable pattern of addresses that do not correspond to data. Advantageously, by creating predictable regions of addresses that do not correspond to data, the software application program may configure the surface to share physical memory space with one or more other surfaces. In particular, the software application may map the virtual address space together with one or more virtual address spaces corresponding to complementary data patterns to the same physical base address. And, by overlapping the virtual address spaces onto the same pages in physical address space, the physical memory may be more densely packed than by using prior-art allocation techniques.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: NVIDIA CORPORATION
    Inventors: Eric B. LUM, Cass W. EVERITT, Henry Packard MORETON, Yury Y. URALSKY, Cyril CRASSIN, Jerome F. DULUK, Jr.
  • Publication number: 20150082001
    Abstract: One embodiment of the present invention includes techniques to support demand paging across a processing unit. Before a host unit transmits a command to an engine that does not tolerate page faults, the host unit ensures that the virtual memory addresses associated with the command are appropriately mapped to physical memory addresses. In particular, if the virtual memory addresses are not appropriately mapped, then the processing unit performs actions to map the virtual memory address to appropriate locations in physical memory. Further, the processing unit ensures that the access permissions required for successful execution of the command are established. Because the virtual memory address mappings associated with the command are valid when the engine receives the command, the engine does not encounter page faults upon executing the command. Consequently, in contrast to prior-art techniques, the engine supports demand paging regardless of whether the engine is involved in remedying page faults.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: NVIDIA CORPORATION
    Inventors: Samuel H. DUNCAN, Jerome F. DULUK, JR., Jonathon Stuart Ramsay EVANS, James Leroy DEMING
  • Patent number: 8984183
    Abstract: One embodiment of the present invention sets forth a technique for enabling the insertion of generated tasks into a scheduling pipeline of a multiple processor system allows a compute task that is being executed to dynamically generate a dynamic task and notify a scheduling unit of the multiple processor system without intervention by a CPU. A reflected notification signal is generated in response to a write request when data for the dynamic task is written to a queue. Additional reflected notification signals are generated for other events that occur during execution of a compute task, e.g., to invalidate cache entries storing data for the compute task and to enable scheduling of another compute task.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: March 17, 2015
    Assignee: Nvidia Corporation
    Inventors: Timothy John Purcell, Lacky V. Shah, Jerome F. Duluk, Jr., Sean J. Treichler, Karim M. Abdalla, Philip Alexander Cuadra, Brian Pharris
  • Patent number: 8970608
    Abstract: One embodiment of the present invention sets forth a technique for transmitting state information associated with at least one graphics command to a graphics processor. The method includes the steps of generating a state object that specifies a set of properties that is needed to execute a first graphics command within the graphics processor, storing in the state object a value associated with a first property included in the set of properties, marking a second property included in the set of properties as a dynamic property, where a value associated with the second property is not stored in the state object and can be updated without having to modify the state object, and transmitting the state object to the graphics processor in order to execute the first graphics command.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 3, 2015
    Assignee: NVIDIA Corporation
    Inventors: Jeffrey A. Bolz, Eric S. Werness, Jerome F. Duluk, Jr.
  • Publication number: 20150049110
    Abstract: One embodiment sets forth a method for transforming 3-D images into 2-D rendered images using render target sample masks. A software application creates multiple render targets associated with a surface. For each render target, the software application also creates an associated render target sample mask configured to select one or more samples included in each pixel. Within the graphics pipeline, a pixel shader processes each pixel individually and outputs multiple render target-specific color values. For each render target, a ROP unit uses the associated render target sample mask to select covered samples included in the pixel. Subsequently, the ROP unit uses the render target-specific color value to update the selected samples in the render target, thereby achieving sample-level color granularity.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: NVIDIA CORPORATION
    Inventors: Eric B. LUM, Jerome F. DULUK, JR., Yury Y. URALSKY, Rouslan DIMITROV, Rui M. BASTOS
  • Publication number: 20150038205
    Abstract: One embodiment of the present invention includes distributing bonus awards associated with a spelling game. A spelling game server system defines a first subset of letters included in a plurality of letters. A spelling game server system defines a set of allowed words that includes a bonus word. A spelling game server system receives one or more letters from the first subset of letters, where the subset of letters includes at least one newly spelled word, and the at least one newly spelled word is included in the set of allowed words. A spelling game server system awarding a first reward based on the at least one newly spelled word, wherein the first reward includes a bonus reward when the at least one newly spelled word includes at least a portion of the bonus word.
    Type: Application
    Filed: June 12, 2014
    Publication date: February 5, 2015
    Inventors: Veronica Wiechers DULUK, Jerome F. DULUK, Jr.
  • Publication number: 20150015595
    Abstract: One embodiment sets forth a method for associating each stencil value included in a stencil buffer with multiple fragments. Components within a graphics processing pipeline use a set of stencil masks to partition the bits of each stencil value. Each stencil mask selects a different subset of bits, and each fragment is strategically associated with both a stencil value and a stencil mask. Before performing stencil actions associated with a fragment, the raster operations unit performs stencil mask operations on the operands. No fragments are associated with both the same stencil mask and the same stencil value. Consequently, no fragments are associated with the same stencil bits included in the stencil buffer. Advantageously, by reducing the number of stencil bits associated with each fragment, certain classes of software applications may reduce the wasted memory associated with stencil buffers in which each stencil value is associated with a single fragment.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Applicant: NVIDIA CORPORATION
    Inventors: Eric B. LUM, Jerome F. DULUK, Jr.
  • Publication number: 20150015594
    Abstract: One embodiment sets forth a method for associating each stencil value included in a stencil buffer with multiple fragments. Components within a graphics processing pipeline use a set of stencil masks to partition the bits of each stencil value. Each stencil mask selects a different subset of bits, and each fragment is strategically associated with both a stencil value and a stencil mask. Before performing stencil actions associated with a fragment, the raster operations unit performs stencil mask operations on the operands. No fragments are associated with both the same stencil mask and the same stencil value. Consequently, no fragments are associated with the same stencil bits included in the stencil buffer. Advantageously, by reducing the number of stencil bits associated with each fragment, certain classes of software applications may reduce the wasted memory associated with stencil buffers in which each stencil value is associated with a single fragment.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Eric B. LUM, Jerome F. DULUK, JR.
  • Patent number: 8922555
    Abstract: One embodiment of the present invention sets forth a technique for storing only the enabled components for each enabled vector and writing only enabled components to one or more specified render targets. A shader program header (SPH) file provides per-component mask bits for each render target. Each enabled mask bit indicates that the pixel shader generates the corresponding component as an output to the raster operations unit. In the hardware, the per-component mask bits are combined with the applications programming interface (API)-level per-component write masks to determine the components that are updated by the shader program. The combined mask is used as the write enable bits for components in one or more render targets. One advantage of the combined mask is that the components that are not updated are not forwarded from the pixel shader to the ROP, thereby saving bandwidth between those processing units.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: December 30, 2014
    Assignee: NVIDIA Corporation
    Inventors: Jerome F. Duluk, Jr., Jesse David Hall, Patrick R. Brown, Mark Dennis Stadler
  • Publication number: 20140337569
    Abstract: A system, method, and computer program product for low-latency scheduling and launch of memory defined tasks. The method includes the steps of receiving a task metadata data structure to be stored in a memory associated with a processor, transmitting the task metadata data structure to a scheduling unit of the processor, storing the task metadata data structure in a cache unit included in the scheduling unit, and copying the task metadata data structure from the cache unit to the memory.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: Nvidia Corporation
    Inventors: Scott Ricketts, Brian Scott Pharris, Nicholas Wang, Luke David Durant, Philip Alexander Cuadra, Jerome F. Duluk, Jr.
  • Patent number: 8860743
    Abstract: Systems and methods for texture processing are presented. In one embodiment a texture method includes creating a sparse texture residency translation map; performing a probe process utilizing the sparse texture residency translation map information to return a finest LOD that contains the texels for a texture lookup operation; and performing the texture lookup operation utilizing the finest LOD. In one exemplary implementation, the finest LOD is utilized as a minimum LOD clamp during the texture lookup operation. A finest LOD number indicates a minimum resident LOD and a sparse texture residency translation map includes one finest LOD number per tile of a sparse texture. The sparse texture residency translation can indicate a minimum resident LOD.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: October 14, 2014
    Assignee: Nvidia Corporation
    Inventors: Andrew Tao, Jerome F. Duluk, Jr., Jesse D. Hall, Henry Moreton
  • Publication number: 20140281297
    Abstract: Techniques are provided by which memory pages may be migrated among PPU memories in a multi-PPU system. According to the techniques, a UVM driver determines that a particular memory page should change ownership state and/or be migrated between one PPU memory and another PPU memory. In response to this determination, the UVM driver initiates a peer transition sequence to cause the ownership state and/or location of the memory page to change. Various peer transition sequences involve modifying mappings for one or more PPU, and copying a memory page from one PPU memory to another PPU memory. Several steps in peer transition sequences may be performed in parallel for increased processing speed.
    Type: Application
    Filed: December 19, 2013
    Publication date: September 18, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Jerome F. DULUK, JR., John MASHEY, Mark HAIRGROVE, Chenghuan JIA, Cameron BUSCHARDT, Lucien DUNNING, Brian FAHS
  • Publication number: 20140281324
    Abstract: One embodiment of the present invention sets forth a computer-implemented method for migrating a memory page from a first memory to a second memory. The method includes determining a first page size supported by the first memory. The method also includes determining a second page size supported by the second memory. The method further includes determining a use history of the memory page based on an entry in a page state directory associated with the memory page. The method also includes migrating the memory page between the first memory and the second memory based on the first page size, the second page size, and the use history.
    Type: Application
    Filed: December 19, 2013
    Publication date: September 18, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Jerome F. DULUK, JR., Cameron BUSCHARDT, James Leroy DEMING, Lucien DUNNING, Brian FAHS, Mark HAIRGROVE, Chenghuan JIA, John MASHEY, James M. VAN DYKE
  • Publication number: 20140281358
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Application
    Filed: October 16, 2013
    Publication date: September 18, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Jerome F. DULUK, JR., Cameron BUSCHARDT, Sherry CHEUNG, James Leroy DEMING, Samuel H. DUNCAN, Lucien DUNNING, Robert GEORGE, Arvind GOPALAKRISHNAN, Mark HAIRGROVE, Chenghuan JIA, John MASHEY
  • Publication number: 20140281296
    Abstract: A system for managing virtual memory. The system includes a first processing unit configured to execute a first operation that references a first virtual memory address. The system also includes a first memory management unit (MMU) associated with the first processing unit and configured to generate a first page fault upon determining that a first page table that is stored in a first memory unit associated with the first processing unit does not include a mapping corresponding to the first virtual memory address. The system further includes a first copy engine associated with the first processing unit. The first copy engine is configured to read a first command queue to determine a first mapping that corresponds to the first virtual memory address and is included in a first page state directory. The first copy engine is also configured to update the first page table to include the first mapping.
    Type: Application
    Filed: October 16, 2013
    Publication date: September 18, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Jerome F. DULUK, JR., Cameron BUSCHARDT, Sherry CHEUNG, James Leroy DEMING, Samuel H. DUNCAN, Lucien DUNNING, Robert GEORGE, Arvind GOPALAKRISHNAN, Mark HAIRGROVE, Chenghuan JIA, John MASHEY