Patents by Inventor Jerome Ferrance

Jerome Ferrance has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10287635
    Abstract: Certain exemplary embodiments can provide a method, which comprises causing a determination to be made that a body fluid sample is from a patient with cancer. The determination can be made via analyzing the body fluid sample by sub-THz resonance spectroscopy with absorption determinations being made at a plurality of frequencies between 0.05 and 1.0 THz to show a presence of specific Micro-RNAs as cancer related molecules in the body fluid.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: May 14, 2019
    Inventors: Tatiana Globus, Boris Gelmont, Amir Jazaery, Alexei Bykhovski, Igor Sizov, Aaron Moyer, Jerome Ferrance
  • Publication number: 20170247764
    Abstract: Certain exemplary embodiments can provide a method, which comprises causing a determination to be made that a body fluid sample is from a patient with cancer. The determination can be made via analyzing the body fluid sample by sub-THz resonance spectroscopy with absorption determinations being made at a plurality of frequencies between 0.05 and 1.0 THz to show a presence of specific Micro-RNAs as cancer related molecules in the body fluid.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 31, 2017
    Inventors: Tatiana Globus, Boris Gelmont, Amir Jazaery, Alexei Bykhovski, Igor Sizov, Aaron Moyer, Jerome Ferrance
  • Patent number: 9417193
    Abstract: Biological cells or spores are analyzed by using enhanced THz coupling to molecules by depositing a test material in a channel of a microfluidic chip using near field sensing of sub-THz radiation from the molecules. The THz radiation is enhanced by transmitting THz radiation through slots in the chip, illuminating molecules of the test material with the enhanced THz radiation transmitted through the slots. A spectroscopic signature of the test material is generated, and a database of signatures of materials is generated. The test material is identified by comparing the signature of the test material with signatures of materials in the database.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: August 16, 2016
    Inventors: Tatiana Globus, Aaron Moyer, Jerome Ferrance, Boris Gelmont
  • Publication number: 20140070102
    Abstract: Biological cells or spores are analyzed by using enhanced THz coupling to molecules by depositing a test material in a channel of a microfluidic chip using near field sensing of sub-THz radiation from the molecules. The THz radiation is enhanced by transmitting THz radiation through slots in the chip, illuminating molecules of the test material with the enhanced THz radiation transmitted through the slots. A spectroscopic signature of the test material is generated, and a database of signatures of materials is generated. The test material is identified by comparing the signature of the test material with signatures of materials in the database.
    Type: Application
    Filed: August 1, 2013
    Publication date: March 13, 2014
    Inventors: Tatiana Globus, Aaron Moyer, Jerome Ferrance, Boris Gelmont
  • Publication number: 20060144707
    Abstract: The present invention relates to cell separation using microfabricated devices. In particular, the present invention provides methods and devices for separation of sperm from biological materials, such as other cells and molecular species, in a cell mixture in a microfabricated device through the use of electroosmotic flow, electrophoretic mobility, pressure gradient, differential adhesion, and/or combinations thereof.
    Type: Application
    Filed: November 20, 2003
    Publication date: July 6, 2006
    Inventors: James Landers, Jerome Ferrance, Katie Horsman
  • Publication number: 20060084185
    Abstract: The present invention is directed to novel device comprising a sol-gel filled microchannel and methods for purifying nucleic acids from biological samples. In one embodiment shown in FIG. 1, the microfluidic device (1) comprises a base (2) with a microchannel (3) formed in the interior of base (2), wherein said microchannel (3) is filled with a sol-gel matrix and in fluid communication with an inlet port (4) and outlet port (5) wherein inlet port (4) and outlet port (5) are formed on the exterior surface (10) of base (2). The device may be further provided with additional components to allow for analytical analysis of the purified nucleic acid sequences.
    Type: Application
    Filed: June 11, 2003
    Publication date: April 20, 2006
    Inventors: James Landers, Pamela Landers, Mary Power, Jerome Ferrance, Sushil Shrinivasan, Kelley Wolfe, Michael Breadmore
  • Publication number: 20060057402
    Abstract: The present invention is directed to improved microdevices and methods of manufacturing such devices. More particularly the present invention is directed to the use of a compound having the general structure (formula (I)): wherein R is selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, and C5-C6 aryl for bonding silica based substrates to plastic substrates or to other silica based substrates. In addition the polymer can be used to coat microchannels to enhance the physical properties of the microdevice.
    Type: Application
    Filed: July 15, 2003
    Publication date: March 16, 2006
    Inventors: Brian Augustine, James Landers, Jerome Ferrance, Joy Polefrone, W. Christopher Hughes