Patents by Inventor Jerome J. Hoffman

Jerome J. Hoffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9502171
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 22, 2016
    Assignee: Vishay Dale Electronics, LLC
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Schafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Publication number: 20160005533
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Application
    Filed: March 10, 2015
    Publication date: January 7, 2016
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Schafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Patent number: 8975994
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 10, 2015
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Schafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Publication number: 20130285784
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Application
    Filed: February 15, 2013
    Publication date: October 31, 2013
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Schafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Patent number: 8378772
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 19, 2013
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Shafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Publication number: 20120139685
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Application
    Filed: August 4, 2011
    Publication date: June 7, 2012
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Shafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Patent number: 8018310
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: September 13, 2011
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Thomas T. Hansen, Jerome J. Hoffman, Timothy Shafer, Nicholas J. Schade, David Lange, Clark Smith, Rod Brune
  • Patent number: 7864015
    Abstract: A flux-channeled high current inductor includes an inductor body having a first end and an opposite second end and a conductor extending through the inductor body. The conductor includes a plurality of separate channels through a cross-sectional area of the inductor body thereby directing magnetic flux inducted by a current flowing through the conductor into two or more cross-sectional areas and reducing flux density of a given single area. The inductor body may be formed of a first ferromagnetic plate and a second ferromagnetic plate. The inductor may be formed from a single component magnetic core and have one or more slits to define inductance. The inductor may be formed of a magnetic powder. A method is provided for manufacturing flux-channeled high current inductors.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 4, 2011
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Thomas T. Hansen, Jerome J. Hoffman
  • Publication number: 20080074225
    Abstract: An inductor includes an inductor body having a top surface and a first and second opposite end surfaces. There is a void through the inductor body between the first and second opposite end surfaces. A thermally stable resistive element positioned through the void and turned toward the top surface to forms surface mount terminals which can be used for Kelvin type sensing. Where the inductor body is formed of a ferrite, the inductor body includes a slot. The resistive element may be formed of a punched resistive strip and provide for a partial turn or multiple turns. The inductor may be formed of a distributed gap magnetic material formed around the resistive element. A method for manufacturing the inductor includes positioning an inductor body around a thermally stable resistive element such that terminals of the thermally stable resistive element extend from the inductor body.
    Type: Application
    Filed: September 27, 2006
    Publication date: March 27, 2008
    Inventors: THOMAS T. HANSEN, JEROME J. HOFFMAN, TIMOTHY SHAFER, NICHOLAS J. SCHADE, DAVID LANGE, CLARK SMITH, ROD BRUNE
  • Patent number: 5512650
    Abstract: Block copolymers having a repeating unit comprised of polysiloxane and urea segments are prepared by copolymerizing certain diaminopolysiloxanes with diisocyanates. The invention also provides novel diaminopolysiloxanes useful as precursors in the preparation of the block copolymers and methods of making such diaminopolysiloxanes. Pressure sensitive adhesive compositions comprising the block copolymer are also provided as are sheet materials coated with the same.
    Type: Grant
    Filed: July 21, 1993
    Date of Patent: April 30, 1996
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Charles M. Leir, Jerome J. Hoffman, Leonard A. Tushaus, Gary T. Wiederholt, Mjeczyslaw H. Mazurek, Audrey A. Sherman, William R. Bronn
  • Patent number: 5461134
    Abstract: Block copolymers having a repeating unit comprised of polysiloxane and urea segments are prepared by copolymerizing certain diaminopolysiloxanes with diisocyanates. The invention also provides novel diaminopolysiloxanes useful as precursors in the preparation of the block copolymers and a method of making such diaminopolysiloxanes. Pressure sensitive adhesive compositions comprising the block copolymer are also provided as are sheet materials coated with the same.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: October 24, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Charles M. Leir, Jerome J. Hoffman
  • Patent number: 5214119
    Abstract: Block copolymers having a repeating unit comprised of polysiloxane and urea segments are prepared by copolymerizing certain diaminopolysiloxanes with diisocyanates. The invention also provides novel diaminopolysiloxanes useful as precursors in the preparation of the block copolymers and a method of making such diaminopolysiloxanes. Pressure sensitive adhesive compositions comprising the block copolymer are also provided as are sheet materials coated with the same.
    Type: Grant
    Filed: November 16, 1990
    Date of Patent: May 25, 1993
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Charles M. Leihr, Leonard A. Tushaus, Jerome J. Hoffman, Gary Wiederholt
  • Patent number: 4933396
    Abstract: The present invention provides a method for making primary amine terminated linear polyethers of molecular weight above about 3500 which have virtually no contamination from in-chain secondary amine functionalities or amine-terminated tertiary amine side-chains. This method involves the production of novel intermediates.The invention also provides purely linear polyether-polyurea block copolymers formed by chain extension of the primary amine terminated linear polyethers.
    Type: Grant
    Filed: May 18, 1989
    Date of Patent: June 12, 1990
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Charles M. Leir, Jerome J. Hoffman, John E. Stark
  • Patent number: 4833213
    Abstract: The present invention provides a method for making primary amine terminated linear polyethers of molecular weight above about 3500 which have virtually no contamination from in-chain secondary amine functionalities or amine-terminated tertiary amine side-chains. This method involves the production of novel intermediates.The invention also provides purely linear polyether-polyurea block copolymers formed by chain extension of the primary amine terminated linear polyethers.
    Type: Grant
    Filed: June 26, 1987
    Date of Patent: May 23, 1989
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Charles M. Leir, Jerome J. Hoffman, John E. Stark