Patents by Inventor Jerome Jendrisak

Jerome Jendrisak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140162897
    Abstract: The present invention provides methods, compositions and kits for using a transposase and a transposon end for generating extensive fragmentation and 5?-tagging of double-stranded target DNA in vitro, then using a DNA polymerase for generating 5?- and 3?-tagged single-stranded DNA fragments without performing a PCR amplification reaction, wherein the first tag on the 5?-ends exhibits the sequence of the transferred transposon end and optionally, an additional arbitrary sequence, and the second tag on the 3?-ends exhibits a different sequence from the sequence exhibited by the first tag. The method is useful for generating 5?- and 3?-tagged DNA fragments for use in a variety of processes, including processes for metagenomic analysis of DNA in environmental samples, copy number variation (CNV) analysis of DNA, and comparative genomic sequencing (CGS), including massively parallel DNA sequencing (so-called “next-generation sequencing.
    Type: Application
    Filed: January 6, 2014
    Publication date: June 12, 2014
    Applicant: ILLUMINA, INC.
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Publication number: 20130196860
    Abstract: Compositions of transposome complexes for generating DNA fragments with specific 5?- and 3?-tags. Kits for generating libraries for sequencing, with transposome complexes, enzymes, oligonucleotides or other components.
    Type: Application
    Filed: June 5, 2012
    Publication date: August 1, 2013
    Applicant: EPICENTRE TECHNOLOGIES CORPORATION
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Patent number: 8309335
    Abstract: The present invention provides novel compositions, kits and methods employing RNA 5? polyphosphatases, RNA 5? monophosphatases, capping enzymes, decapping enzymes, nucleic acid pyrophosphatases and RNA ligases, as well as other enzymes, for selective 5? ligation tagging of desired classes of RNA molecules that differ with respect to particular chemical moieties on their 5? ends. The 5? tagged RNA molecules can be used for synthesis of tagged first-stand cDNA, double-stranded cDNA, and sense or antisense RNA for a variety of uses.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: November 13, 2012
    Assignee: Epicentre Technologies Corporation
    Inventors: Jerome Jendrisak, Ramesh Vaidyanathan, Gary Dahl
  • Publication number: 20120156753
    Abstract: The present invention provides novel compositions, kits and methods employing RNA 5? polyphosphatases, RNA 5? monophosphatases, capping enzymes, decapping enzymes, nucleic acid pyrophosphatases and RNA ligases, as well as other enzymes, for selective 5? ligation tagging of desired classes of RNA molecules that differ with respect to particular chemical moieties on their 5? ends. The 5? tagged RNA molecules can be used for synthesis of tagged first-stand cDNA, double-stranded cDNA, and sense or antisense RNA for a variety of uses.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 21, 2012
    Applicant: ILLUMINA, INC.
    Inventors: Jerome Jendrisak, Ramesh Vaidyanathan, Gary Dahl
  • Patent number: 8163491
    Abstract: The present invention provides novel compositions, kits and methods employing RNA 5? polyphosphatases, RNA 5? monophosphatases, capping enzymes, decapping enzymes, nucleic acid pyrophosphatases and RNA ligases, as well as other enzymes, for selective 5? ligation tagging of desired classes of RNA molecules that differ with respect to particular chemical moieties on their 5? ends. The 5?tagged RNA molecules can be used for synthesis of tagged first-stand cDNA, double-stranded cDNA, and sense or antisense RNA for a variety of uses.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 24, 2012
    Assignee: Epicentre Technologies Corporation
    Inventors: Jerome Jendrisak, Ramesh Vaidyanathan, Gary Dahl
  • Publication number: 20110287435
    Abstract: Compositions of transposome complexes for generating DNA fragments with specific 5?- and 3?-tags. Kits for generating libraries for sequencing, with transposome complexes, enzymes, oligonucleotides or other components.
    Type: Application
    Filed: July 7, 2011
    Publication date: November 24, 2011
    Applicant: EPICENTRE TECHNOLOGIES CORPORATION
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Publication number: 20110143436
    Abstract: The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Inventors: Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Publication number: 20110143397
    Abstract: The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and/or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and/or single-stranded run-on mRNAs.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Inventors: Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak
  • Publication number: 20100159526
    Abstract: The present invention provides novel compositions, kits and methods employing RNA 5? polyphosphatases, RNA 5? monophosphatases, capping enzymes, decapping enzymes, nucleic acid pyrophosphatases and RNA ligases, as well as other enzymes, for selective 5? ligation tagging of desired classes of RNA molecules that differ with respect to particular chemical moieties on their 5? ends. The 5?tagged RNA molecules can be used for synthesis of tagged first-stand cDNA, double-stranded cDNA, and sense or antisense RNA for a variety of uses.
    Type: Application
    Filed: February 17, 2010
    Publication date: June 24, 2010
    Applicant: EPICENTRE TECHNOLOGIES CORPORATION
    Inventors: Jerome Jendrisak, Ramesh Vaidyanathan, Gary Dahl
  • Publication number: 20100120098
    Abstract: The present invention provides methods, compositions and kits for using a transposase and a transposon end for generating extensive fragmentation and 5?-tagging of double-stranded target DNA in vitro, then using a DNA polymerase for generating 5?- and 3?-tagged single-stranded DNA fragments without performing a PCR amplification reaction, wherein the first tag on the 5?-ends exhibits the sequence of the transferred transposon end and optionally, an additional arbitrary sequence, and the second tag on the 3?-ends exhibits a different sequence from the sequence exhibited by the first tag. The method is useful for generating 5?- and 3?-tagged DNA fragments for use in a variety of processes, including processes for metagenomic analysis of DNA in environmental samples, copy number variation (CNV) analysis of DNA, and comparative genomic sequencing (CGS), including massively parallel DNA sequencing (so-called “next-generation sequencing.
    Type: Application
    Filed: October 24, 2009
    Publication date: May 13, 2010
    Applicant: Epicentre Technologies Corporation
    Inventors: Haiying Li Grunenwald, Nicholas Caruccio, Jerome Jendrisak, Gary Dahl
  • Publication number: 20080044851
    Abstract: The present invention provides compositions and methods for digesting DNA. In particular, the present invention provides enzymes mixtures that provide enhanced DNA digestion and methods of using the enzyme mixtures to eliminate or reduce undesired DNA molecules from a sample of interest.
    Type: Application
    Filed: June 4, 2007
    Publication date: February 21, 2008
    Applicant: Epicentre Technologies
    Inventors: Jerome Jendrisak, Haiying Grunenwald
  • Publication number: 20070281336
    Abstract: The present invention relates to kits and methods for efficiently generating 5? capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. The invention is used to obtain novel compositions of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5?-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA for a variety of research, therapeutic, and commercial applications.
    Type: Application
    Filed: April 16, 2007
    Publication date: December 6, 2007
    Applicant: Epicentre Technologies
    Inventors: Jerome Jendrisak, Ronald Meis, Gary Dahl
  • Publication number: 20060240451
    Abstract: The present invention relates to compositions and methods employing 5?-phosphate-dependent nucleic acid exonucleases. In particular, the present invention provides kits and methods employing 5?-phosphate-dependent nucleic acid exonucleases for selective enrichment, isolation and amplification of a particular set of desired nucleic acid molecules from samples that also contain undesired nucleic acid molecules for a variety of uses. In preferred embodiments, the desired nucleic acid molecules comprise prokaryotic and/or eukaryotic mRNA.
    Type: Application
    Filed: February 9, 2006
    Publication date: October 26, 2006
    Applicant: Epicentre Technologies
    Inventors: Jerome Jendrisak, Judith Meis, Ronald Meis, Agnes Radek, Gary Dahl