Patents by Inventor Jerome K. Fuller

Jerome K. Fuller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147626
    Abstract: A dynamic flex circuit includes a plurality of hole sets arranged along the dynamic flexible circuit. The dynamic flex circuit also includes a plurality of actuator wires coupled to the dynamic flexible circuit by way of intertwining each of the plurality of actuator wires through each hole set in the plurality of hole sets arrange along the dynamic flexible circuit. Each of the plurality of actuator wires are configured to impart a motion onto the dynamic flexible circuit depending on the amount of heat applied to each of the plurality of actuator wires.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 2, 2024
    Applicant: The Aerospace Corporation
    Inventors: Jerome K. FULLER, Todd Fillmore SHEERIN
  • Patent number: 11420775
    Abstract: To reduce space debris and decrease risks for future space flights and currently operating satellites, NASA requires all satellites to have an end of life deorbiting plan to prevent satellites from having long and indefinite orbit lifespan. Accordingly, disclosed herein are systems and methods for deploying a deorbiting drag device to dramatically decrease the orbit lifespan of satellites. One of the methods comprises: providing power, using a photovoltaic panel, to a central processing unit (CPU) of the satellite; determining, using a health sensor, a health status of the satellite by monitoring activities of the CPU; and releasing a deorbiting drag device based on the health status by diverting power from the photovoltaic panel to a release actuator.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: August 23, 2022
    Assignee: THE AEROSPACE CORPORATION
    Inventor: Jerome K. Fuller
  • Patent number: 11119256
    Abstract: Many in the space weather community consider our understanding of the buoyancy of the thermosphere and its effects on the orbits of satellites in Low Earth Orbit (LEO) to be insufficient during short time frames. Disclosed herein is an approach for making on-demand thermosphere buoyancy measurements using a deployable low mass retroreflector with CubeSat-like dimensions. A CubeSat storing many retroreflectors can dispense one or more of these passive satellites according to a predetermined schedule or on-command, in response to an observed space weather phenomenon like a coronal mass ejection. With measurements of the orbit decay from these passive satellites, a better understanding of the relationship between space weather and orbital decay can be established with relatively low cost.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: September 14, 2021
    Assignee: THE AEROSPACE CORPORATION
    Inventor: Jerome K. Fuller
  • Patent number: 10914842
    Abstract: A data recovery device configured to store data onboard a hypersonic vehicle travelling at hypersonic speeds. The data recovery device is released from the hypersonic vehicle upon a release command or an anomalous event. Upon release, the data recovery device is configured to receive Global Positioning System (GPS) position data and configured to broadcast the GPS position data in short bursts during decent to a surface of the Earth and upon impact with the surface of the Earth to aid in recovery of the data recovery device.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: February 9, 2021
    Assignee: The Aerospace Corporation
    Inventors: William H. Ailor, III, Jeffrey Arthur Lang, James Lawrence Hoffman, II, Jerome K. Fuller, Jeffry Padin, Michael Alan Weaver, Franklin John Bayuk
  • Publication number: 20200319385
    Abstract: Many in the space weather community consider our understanding of the buoyancy of the thermosphere and its effects on the orbits of satellites in Low Earth Orbit (LEO) to be insufficient during short time frames. Disclosed herein is an approach for making on-demand thermosphere buoyancy measurements using a deployable low mass retroreflector with CubeSat-like dimensions. A CubeSat storing many retroreflectors can dispense one or more of these passive satellites according to a predetermined schedule or on-command, in response to an observed space weather phenomenon like a coronal mass ejection. With measurements of the orbit decay from these passive satellites, a better understanding of the relationship between space weather and orbital decay can be established with relatively low cost.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Inventor: Jerome K. Fuller
  • Patent number: 10683107
    Abstract: A release apparatus includes a base member and a channel having a first portion and a second portion. A first rod positioned within the first portion includes a first end portion having a first coupling device and a second end portion coupled to a first portion of a panel assembly. A second rod positioned within the channel's second portion includes a first end portion having a second coupling device such that the second coupling device is positioned proximate to the first coupling device. The second rod includes a second end portion coupled to a second portion of the panel assembly. First and second coupling devices rotate such that a linear force is generated between the first and second rods, enabling the first rod second end portion and the second rod second end portion to simultaneously release the first and second portions of the panel assembly, respectively.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: June 16, 2020
    Assignee: The Aerospace Corporation
    Inventors: Jerome K. Fuller, Alexander August-Schmidt, Geoffrey A. Maul, Cody L. Shaw
  • Publication number: 20200166651
    Abstract: A data recovery device configured to store data onboard a hypersonic vehicle travelling at hypersonic speeds. The data recovery device is released from the hypersonic vehicle upon a release command or an anomalous event. Upon release, the data recovery device is configured to receive Global Positioning System (GPS) position data and configured to broadcast the GPS position data in short bursts during decent to a surface of the Earth and upon impact with the surface of the Earth to aid in recovery of the data recovery device.
    Type: Application
    Filed: November 23, 2018
    Publication date: May 28, 2020
    Inventors: William H. AILOR, III, Jeffrey Arthur LANG, James Lawrence HOFFMAN, II, Jerome K. FULLER, Jeffry PADIN, Michael Alan WEAVER, Franklin John BAYUK
  • Publication number: 20200108953
    Abstract: To reduce space debris and decrease risks for future space flights and currently operating satellites, NASA requires all satellites to have an end of life deorbiting plan to prevent satellites from having long and indefinite orbit lifespan. Accordingly, disclosed herein are systems and methods for deploying a deorbiting drag device to dramatically decrease the orbit lifespan of satellites. One of the methods comprises: providing power, using a photovoltaic panel, to a central processing unit (CPU) of the satellite; determining, using a health sensor, a health status of the satellite by monitoring activities of the CPU; and releasing a deorbiting drag device based on the health status by diverting power from the photovoltaic panel to a release actuator.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventor: Jerome K. Fuller
  • Patent number: 10414518
    Abstract: Attitude of a vehicle may be controlled using movable mass. The movable mass may move inside a vehicle or its outline, outside of the vehicle or its outline, inside-to-outside and/or outside-to-inside of the vehicle or its outline, or any combination thereof. The movable mass may be a solid, liquid, and/or gas. When the center-of-mass of the vehicle is moved relative to the line-of-action of applied forces such as thrust, drag, or lift, a torque can be generated for attitude control or for other purposes as a matter of design choice. In the case of external movable masses that extend from the vehicle or its outline, when operating in endoatmospheric flight, or general travel through a fluid, aerodynamic forces from the atmosphere or general fluid forces may further be leveraged to control the attitude of the vehicle (e.g., aerodynamic flaps).
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: September 17, 2019
    Assignee: The Aerospace Corporation
    Inventors: Kevin L Zondervan, Jerome K Fuller
  • Publication number: 20190039758
    Abstract: A release apparatus includes a base member and a channel having a first portion and a second portion. A first rod positioned within the first portion includes a first end portion having a first coupling device and a second end portion coupled to a first portion of a panel assembly. A second rod positioned within the channel's second portion includes a first end portion having a second coupling device such that the second coupling device is positioned proximate to the first coupling device. The second rod includes a second end portion coupled to a second portion of the panel assembly. First and second coupling devices rotate such that a linear force is generated between the first and second rods, enabling the first rod second end portion and the second rod second end portion to simultaneously release the first and second portions of the panel assembly, respectively.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 7, 2019
    Inventors: Jerome K. FULLER, Alexander AUGUST-SCHMIDT, Geoffrey A. MAUL, Cody L. SHAW
  • Patent number: 9919792
    Abstract: Attitude and/or attitude rate of a vehicle may be controlled using jet paddles and/or movable masses. Thrust direction generally may also be controlled using jet paddles. The jet paddles may be moved into and/or sufficiently close to the exhaust flow, and out of the exhaust flow, to change the thrust direction. Movable masses may also be used in addition to, or in lieu of, jet paddles. Movement of the movable masses alters a center-of-mass of the vehicle, generating torque that changes vehicle attitude.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: March 20, 2018
    Assignee: The Aerospace Corporation
    Inventors: Kevin L Zondervan, Jerome K Fuller
  • Publication number: 20170297748
    Abstract: Attitude of a vehicle may be controlled using movable mass. The movable mass may move inside a vehicle or its outline, outside of the vehicle or its outline, inside-to-outside and/or outside-to-inside of the vehicle or its outline, or any combination thereof. The movable mass may be a solid, liquid, and/or gas. When the center-of-mass of the vehicle is moved relative to the line-of-action of applied forces such as thrust, drag, or lift, a torque can be generated for attitude control or for other purposes as a matter of design choice. In the case of external movable masses that extend from the vehicle or its outline, when operating in endoatmospheric flight, or general travel through a fluid, aerodynamic forces from the atmosphere or general fluid forces may further be leveraged to control the attitude of the vehicle (e.g., aerodynamic flaps).
    Type: Application
    Filed: November 7, 2016
    Publication date: October 19, 2017
    Applicant: The Aerospace Corporation
    Inventors: Kevin L. Zondervan, Jerome K. Fuller
  • Publication number: 20160194089
    Abstract: Attitude and/or attitude rate of a vehicle may be controlled using jet paddles and/or movable masses. Thrust direction generally may also be controlled using jet paddles. The jet paddles may be moved into and/or sufficiently close to the exhaust flow, and out of the exhaust flow, to change the thrust direction. Movable masses may also be used in addition to, or in lieu of, jet paddles. Movement of the movable masses alters a center-of-mass of the vehicle, generating torque that changes vehicle attitude.
    Type: Application
    Filed: July 2, 2014
    Publication date: July 7, 2016
    Inventors: Kevin L. Zondervan, Jerome K. Fuller
  • Patent number: 9038368
    Abstract: Certain embodiments of the invention may include systems, methods, and apparatus for providing a multi-fuel hybrid rocket motor. According to an example embodiment of the invention, a method is provided for producing a multi-fuel hybrid motor. The method can include forming a body, where the body includes one or more intake ports; one or more exit nozzles; one or more channels connecting the one or more intake ports with the one or more exit nozzles; and a plurality of cavities comprising segment walls in communication with the one or more channels. The method also includes depositing a propellant fuel within the plurality of cavities, wherein at least a portion of the propellant fuel is exposed to the one or more channels and wherein the propellant fuel has a higher burn consumption rate than the segment walls.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: May 26, 2015
    Assignee: THE AEROSPACE CORPORATION
    Inventor: Jerome K. Fuller
  • Patent number: 8844133
    Abstract: A hybrid rocket motor is manufactured by photopolymerizing the solid fuel grain in a stereolithography method, wherein fuel grains in a plastic matrix are deposited in layers for building a solid fuel rocket body in three dimensions for improved performance and for a compact design,
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: September 30, 2014
    Assignee: The Aerospace Corporation
    Inventor: Jerome K. Fuller
  • Patent number: 8707676
    Abstract: A hybrid rocket motor is manufactured by photopolymerizing the solid fuel grain in a stereolithography method, wherein fuel grains in a plastic matrix are deposited in layers for building a solid fuel rocket body in three dimensions for improved performance and for a compact design, the hybrid rocket motor including radial channels for defining a desired burn profile including the oxidizer to fuel burn ratio.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 29, 2014
    Assignee: The Aerospace Corporation
    Inventor: Jerome K. Fuller
  • Patent number: 8616496
    Abstract: Embodiments of the invention relate to systems and methods for a self-deploying vehicle drag device. In one embodiment, a drag device for a vehicle can be provided. The drag device can include a chute body, wherein the chute body is connected to the vehicle. The drag device can also include at least one collapsible member mounted to the chute body, wherein the at least one collapsible member and chute body are maintained in respective compressed configurations until deployed. Furthermore, the drag device can include at least one device adapted to release the chute body from the vehicle, wherein the chute body and the at least one collapsible member are deployed in expanded configurations with respect to the vehicle.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 31, 2013
    Assignee: The Aerospace Corporation
    Inventors: Brian S. Hardy, Jerome K. Fuller
  • Patent number: 8601790
    Abstract: A hybrid rocket motor is manufactured by photopolymerizing the solid fuel grain in a stereolithography method, wherein fuel grains in a plastic matrix are deposited in layers for building a solid fuel rocket body in three dimensions for improved performance and for a compact design, the hybrid rocket motor including buried radial channels for defining a desired burn profile including the oxidizer to fuel burn ratio.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: December 10, 2013
    Assignee: The Aerospace Corporation
    Inventor: Jerome K. Fuller
  • Patent number: 8538606
    Abstract: Certain embodiments of the invention may include systems, methods, and apparatus for sensing flight direction of a spacecraft. According to an example embodiment of the invention, a method is provided for determining flight direction of a spacecraft. The method includes providing at least one imaging detector associated with a spacecraft; imaging at least a portion of a celestial body onto the at least one imaging detector; acquiring, by the at least one imaging detector, sequential images of at least a portion of the celestial body; and determining the spacecraft flight direction relative to the celestial body based at least in part on processing the sequential images, wherein the processing is performed by one or more computer processors.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: September 17, 2013
    Assignee: The Aerospace Corporation
    Inventors: Siegfried W. Janson, Jerome K. Fuller
  • Publication number: 20130031888
    Abstract: Certain embodiments of the invention may include systems, methods, and apparatus for providing a multi-fuel hybrid rocket motor. According to an example embodiment of the invention, a method is provided for producing a multi-fuel hybrid motor. The method can include forming a body, where the body includes one or more intake ports; one or more exit nozzles; one or more channels connecting the one or more intake ports with the one or more exit nozzles; and a plurality of cavities comprising segment walls in communication with the one or more channels. The method also includes depositing a propellant fuel within the plurality of cavities, wherein at least a portion of the propellant fuel is exposed to the one or more channels and wherein the propellant fuel has a higher burn consumption rate than the segment walls.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Applicant: THE AEROSPACE CORPORATION
    Inventor: Jerome K. Fuller