Patents by Inventor Jerome Poirier

Jerome Poirier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10429356
    Abstract: A method and system for calibrating an ultrasonic wedge and a probe are disclosed. The calibration method includes the steps of automatically determining the ultrasonic signal acquisition width and the first ultrasonic signal gate based on the theoretical parameters of the ultrasonic wedge and the probe. The calibration method can also include the steps of automatically determining the operating status of transducer elements in a phased array transducer and then determining the actual parameters of the ultrasonic wedge based on the live transducer elements.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: October 1, 2019
    Assignee: General Electric Company
    Inventors: Anandamurugan S, Matthias Jobst, Jerome Poirier
  • Patent number: 9110000
    Abstract: A method and system for determining the position of an ultrasonic wedge and a probe is disclosed. The positioning method includes the steps of automatically determining the position of the ultrasonic wedge and the probe based on a number of parameters, including parameters that are based on the particular ultrasonic wedge and the probe as well as parameters based on the dimensions of the conduit and the girth weld.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventors: Jerome Poirier, Anandamurugan S
  • Patent number: 8972206
    Abstract: A system for use in determining a location of a defect in an object is provided. The system includes an ultrasonic phased array configured to provide a sector scan of the object, a display, and a processor. The processor is programmed to provide a volume-corrected view of a sector of an ultrasonic inspection of the object on the display, wherein the object has a first surface defined by a first radius and a second surface defined by a second radius that is shorter than the first radius, receive gate parameters of a gate used to measure a location of a reflection of a beam emitted from the ultrasonic phased array, wherein the reflection is indicative of a defect on the first surface or the second surface, and calculate a location of the defect using the gate.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Chad Martin Shaffer, Peter Renzel, Jerome Poirier, Michael Maria Berke, Douglas Paul Lutz, Rai Mohan Dasarathan, Anandamurugan S
  • Patent number: 8770027
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: July 8, 2014
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Patent number: 8739630
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: June 3, 2014
    Assignee: GE Sensing & Inspection Technology
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Publication number: 20130218490
    Abstract: A method and system for determining the position of an ultrasonic wedge and a probe is disclosed. The positioning method includes the steps of automatically determining the position of the ultrasonic wedge and the probe based on a number of parameters, including parameters that are based on the particular ultrasonic wedge and the probe as well as parameters based on the dimensions of the conduit and the girth weld.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: General Electric Company
    Inventors: Jerome Poirier, Anandamurugan S
  • Publication number: 20130197822
    Abstract: A system for use in determining a location of a defect in an object is provided. The system includes an ultrasonic phased array configured to provide a sector scan of the object, a display, and a processor. The processor is programmed to provide a volume-corrected view of a sector of an ultrasonic inspection of the object on the display, wherein the object has a first surface defined by a first radius and a second surface defined by a second radius that is shorter than the first radius, receive gate parameters of a gate used to measure a location of a reflection of a beam emitted from the ultrasonic phased array, wherein the reflection is indicative of a defect on the first surface or the second surface, and calculate a location of the defect using the gate.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Inventors: Chad Martin Shaffer, Peter Renzel, Jerome Poirier, Michael Maria Berke, Douglas Paul Lutz, Rai Mohan Dasarathan, Anandamurugan S
  • Publication number: 20130192334
    Abstract: A method and system for calibrating an ultrasonic wedge and a probe are disclosed. The calibration method includes the steps of automatically determining the ultrasonic signal acquisition width and the first ultrasonic signal gate based on the theoretical parameters of the ultrasonic wedge and the probe. The calibration method can also include the steps of automatically determining the operating status of transducer elements in a phased array transducer and then determining the actual parameters of the ultrasonic wedge based on the live transducer elements.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: General Electric Company
    Inventors: Anandamurugan S, Matthias Jobst, Jerome Poirier
  • Publication number: 20110247417
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Application
    Filed: September 7, 2009
    Publication date: October 13, 2011
    Applicant: GE SENSING & INSPECTION TECHNOLOGIES GMBH
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Publication number: 20110239768
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Application
    Filed: September 7, 2009
    Publication date: October 6, 2011
    Applicant: GE SENSING & INSPECTION TECHNOLOGIES GMBH
    Inventors: Michael Berke, Wolf-Dietrich Kleinert, York Oberdoerfer, Jerome Poirier, Sascha Schieke