Patents by Inventor Jerry A. Carter

Jerry A. Carter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7925480
    Abstract: A simulation system [200] models and optimizes parameters for a pulsed liquid slug boring system employing an energetic fluid [7]. The simulation system [200] employs a fluid flow energy unit [251], an exhaust and retention energy unit [253] and a comminuting energy unit [255] to calculate energies of the system. Total energy unit [257] combines these energies. Fluid flow energy unit 251 receives fluid volume and calculates the fluid flow energy. Exhaust and retention energy unit 253 receives input from the exhaust energy volume unit [243] and mission duration unit [211] to determine the exhaust and retention energy. Comminuting energy unit 255 receives hole depth and hole diameter and specific energy of rock to determine the require comminuting energy. The simulation system [200] operates to determine optimum values of design parameters by searching for the minimum energy solution.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 12, 2011
    Assignee: The University of Scranton
    Inventors: W. Andrew Berger, Robert A. Spalletta, Jerry A. Carter
  • Patent number: 7921938
    Abstract: A system having a number of land units [100, 4000, 5000] is disclosed which operates to efficiently find and create boreholes [5] to one or more underground targets [1]. Each of the land units [100, 4000, 5000] may be remotely controlled from a central command unit [6000]. The land unit also may be self-controlled, or partially controlled by the central command unit [6000]. The system [10] is reconfigurable to reallocate tasks to functional land units [100, 4000, 5000] which were originally allocated to land units which have been destroyed and are now non-functional.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 12, 2011
    Assignee: The University of Scranton
    Inventors: W. Andrew Berger, Robert A. Spalletta, Jerry A. Carter, Richard M. Pell, Marian Mazurkiewicz
  • Patent number: 7828078
    Abstract: The present invention is a self-contained, high-energy liquid rock-boring system that will bore a small-diameter access hole [5] several hundred meters through hard granite and other obstacles within minutes of deployment. It employs a land unit [100] platform subsystem [1000] with an energetic fluid fuel reservoir [1300] and a boring subsystem [3000] having a plurality of pulsejets [3100]. Each pulsejet [3100] repeatedly ignites the energetic fluid [7] causing a plurality of rapidly-expanding gas bubbles [3250] which create and force a plurality liquid slugs [10] ahead of them rapidly out through a nozzle [3260] causing the slugs [10] to impact against materials ahead of the nozzles [3260], boring an access hole [5]. The system also employs an umbilical subsystem [2000] connecting the boring [3000] and the platform subsystems [1000]. The system can be used to rapidly bore an access hole [5] to provide air and resources to trapped miners.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: November 9, 2010
    Assignee: The University of Scranton
    Inventors: Wojciech Andrew Berger, Robert A. Spalletta, Jerry A. Carter, Richard M. Pell, Marian Mazurkiewicz, Christopher Davey
  • Patent number: 7584807
    Abstract: A method and device for boring a hole [5] through a material along a desired path includes an umbilical subsystem [2000] connected to a boring subsystem [3000] having a plurality of pulsejets [3100]. These pulsejets [3100] repeatedly receive and ignite a combustible fluid [7] in a combustion chamber [3230] causing a portion of the fluid [7] to be forced out of a nozzle [3260] at high speeds as a fluid slug [10] that impacts materials ahead of the pulsejet [3100]. A controller [3310] controls the amount of fluid provided to each pulsejet [3100], and the firing timing, thereby controlling the intensity in which each slug [10] impacts the material. By modulating the intensity and firing sequence of each of the pulsejets [3100], material ahead of the boring subsystem [3000] is differentially bored thereby allowing steering of the boring subsystem [3000].
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: September 8, 2009
    Assignee: The University of Scranton
    Inventors: W. Andrew Berger, Robert A. Spalletta, Jerry A. Carter, Richard M. Pell, Marian Mazurkiewicz
  • Publication number: 20090090553
    Abstract: A system having a number of land units [100, 4000, 5000] is disclosed which operates to efficiently find and create boreholes [5] to one or more underground targets [1]. Each of the land units [100, 4000, 5000] may be remotely controlled from a central command unit [6000]. The land unit also may be self-controlled, or partially controlled by the central command unit [6000]. The system [10] is reconfigurable to reallocate tasks to functional land units [100, 4000, 5000] which were originally allocated to land units which have been destroyed and are now non-functional.
    Type: Application
    Filed: March 30, 2006
    Publication date: April 9, 2009
    Inventors: Wojciech Andrew Berger, Robert A. Spalletta, Jerry A. Carter, Richard M. Pell, Marian Mazurkiewicz
  • Publication number: 20090071713
    Abstract: The present invention is a self-contained, high-energy liquid rock-boring system that will bore a small-diameter access hole [5] several hundred meters through hard granite and other obstacles within minutes of deployment. It employs a land unit [100] platform subsystem [1000] with an energetic fluid fuel reservoir [1300] and a boring subsystem [3000] having a plurality of pulsejets [3100]. Each pulsejet [3100] repeatedly ignites the energetic fluid [7] causing a plurality of rapidly-expanding gas bubbles [3250] which create and force a plurality liquid slugs [10] ahead of them rapidly out through a nozzle [3260] causing the slugs [10] to impact against materials ahead of the nozzles [3260], boring an access hole [5]. The system also employs an umbilical subsystem [2000] connecting the boring [3000] and the platform subsystems [1000]. The system can be used to rapidly bore an access hole [5] to provide air and resources to trapped miners.
    Type: Application
    Filed: March 23, 2006
    Publication date: March 19, 2009
    Applicant: UNIVERSITY OF SCRANTON
    Inventors: Wojciech Andrew Berger, Robert A. Spalletta, Jerry A. Carter, Richard M. Pell, Marian Mazurkiewicz, Christopher Davey
  • Publication number: 20090057017
    Abstract: A method and device for boring a hole [5] through a material along a desired path includes an umbilical subsystem [2000] connected to a boring subsystem [3000] having a plurality of pulsejets [3100]. These pulsejets [3100] repeatedly receive and ignite a combustible fluid [7] in a combustion chamber [3230] causing a portion of the fluid [7] to be forced out of a nozzle [3260] at high speeds as a fluid slug [10] that impacts materials ahead of the pulsejet [3100]. A controller [3310] controls the amount of fluid provided to each pulsejet [3100], and the firing timing, thereby controlling the intensity in which each slug [10] impacts the material. By modulating the intensity and firing sequence of each of the pulsejets [3100], material ahead of the boring subsystem [3000] is differentially bored thereby allowing steering of the boring subsystem [3000].
    Type: Application
    Filed: March 23, 2006
    Publication date: March 5, 2009
    Inventors: W. Andrew Berger, Robert A. Spalletta, Jerry A. Carter, Richard M. Pell, Marian Mazurkiewicz
  • Publication number: 20090043553
    Abstract: A simulation system [200] models and optimizes parameters for a pulsed liquid slug boring system employ an energetic fluid [7]. The simulation system [200] employs a fluid flow energy unit [251], an exhaust and retention energy unit [253] and a comminuting energy unit [255] to calculate energies of the system. Total energy unit [257] combines these energies. Fluid flow energy unit 251 receives fluid volume and calculates the fluid flow energy. Exhaust and retention energy unit 253 receives input from the exhaust energy volume unit [243] and mission duration unit [211] to determine the exhaust and retention energy. Comminuting energy unit 255 receives hole depth and hole diameter and specific energy of rock to determine the require comminuting energy. The simulation system [200] operates to determine optimum values of design parameters by searching for the minimum energy solution.
    Type: Application
    Filed: March 30, 2006
    Publication date: February 12, 2009
    Inventors: W. Andrew Berger, Robert A. Spalletta, Jerry A. Carter
  • Patent number: 5645873
    Abstract: An accumulator head for a blow molding machine uses an electromechanical drive assembly for the purging and programming functions. The purging actuator of the drive assembly includes a ball screw and nut assembly in which the ball screw is rotated by an electric motor to move the ball nut assembly vertically and operate the plunger of the accumulator. A second ball screw and nut assembly is included in the programming actuator of the drive assembly for moving the mandrel vertically, thereby controlling the size of the die outlet opening of the accumulator. Preferably, the ball screws of the programming and purging actuators are axially aligned with the nut assemblies each carried by a yoke that travels on guide rods. Four support rods are provided to maintain alignment and provide stationary mounting for the respective motors. The structure has sufficient rigidity to supply the force required for the purging operation, but uses no hydraulic actuators.
    Type: Grant
    Filed: August 14, 1995
    Date of Patent: July 8, 1997
    Assignee: Cincinnati Milacron Inc.
    Inventor: Jerry A. Carter, Jr.
  • Patent number: 5427162
    Abstract: There is disclosed a wood shaving device which utilizes a rotating cutting member that supports a plurality of cutting blades which move past a stationary doctor bar. The cutting blades are arranged in a spaced-apart array on the shaving device, lying along non-radial paths so that the predominant action is a successive impact of individual cutting blades, rather than a simultaneous impact of two or more blades against the wood scrap. The cutting blades are preferably supported on a rotating cutting wheel which has a plurality of through apertures, with one each of the cutting blades removably mounted immediately adjacent each through aperture. The cutting blades are rotated past the doctor bar which restricts movement of the wood, resulting in a shaving action on the wood. The wood shavings pass through the through apertures of the cutting wheel and are removed.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: June 27, 1995
    Inventor: Jerry A. Carter
  • Patent number: 4476955
    Abstract: An articulated power lifting machine has a tool at the end of its working arm. The position of the sections of the working arm is sensed and made to operate a tool levelling system. That same sensor is made to move counterweights in a system which achieves simplicity by treating the need for counterweighting as equal, except for reference point of movement, as equivalent to the need for levelling. The arrangement lends itself to use with a transporter which is constructed building block style.
    Type: Grant
    Filed: June 22, 1981
    Date of Patent: October 16, 1984
    Inventor: Jerry A. Carter
  • Patent number: RE36682
    Abstract: An accumulator head for a blow molding machine uses an electromechanical drive assembly for the purging and programming functions. The purging actuator of the drive assembly includes a ball screw and nut assembly in which the ball screw is rotated by an electric motor to move the ball nut assembly vertically and operate the plunger of the accumulator. A second ball screw and nut assembly is included in the programming actuator of the drive assembly for moving the mandrel vertically, thereby controlling the size of the die outlet opening of the accumulator. Preferably, the ball screws of the programming and purging actuators are axially aligned with the nut assemblies each carried by a yoke that travels on guide rods. Four support rods are provided to maintain alignment and provide stationary mounting for the respective motors. The structure has sufficient rigidity to supply the force required for the purging operation, but uses no hydraulic actuators.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: May 2, 2000
    Assignee: Milacron Inc.
    Inventor: Jerry A. Carter, Jr.