Patents by Inventor Jerry Chung-yu Lee

Jerry Chung-yu Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10264974
    Abstract: Disclosed are methods for imaging lumen-forming structures such as blood vessels using near-infrared fluorescence in the NIR-II region of 1000-1700 nm. The fluorescence is created by excitation of solubilized nano-structures that are delivered to the structures, such as carbon nanotubes, quantum dots or organic molecular fluorophores attached to hydrophilic polymers. These nanostructures fluoresce in the NIR-II region when illuminated through the skin and tissues. Fine anatomical vessel resolution down to ?30 ?m and high temporal resolution up to 5-10 frames per second is obtained for small-vessel imaging with up to 1 cm penetration depth in mouse hind limb, which compares favorably to tomographic imaging modalities such as CT and MRI with much higher spatial and temporal resolution, and compares favorably to scanning microscopic imaging techniques with much deeper penetration.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: April 23, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Guosong Hong, Jerry Chung-yu Lee, Ngan Fong Huang, John P. Cooke, Hongjie Dai
  • Publication number: 20150297086
    Abstract: Disclosed are methods for imaging lumen-forming structures such as blood vessels using near-infrared fluorescence in the NIR-II region of 1000-1700 nm. The fluorescence is created by excitation of solubilized nano-structures that are delivered to the structures, such as carbon nanotubes, quantum dots or organic molecular fluorophores attached to hydrophilic polymers. These nanostructures fluoresce in the NIR-II region when illuminated through the skin and tissues. Fine anatomical vessel resolution down to ?30 ?m and high temporal resolution up to 5-10 frames per second is obtained for small-vessel imaging with up to 1 cm penetration depth in mouse hind limb, which compares favorably to tomographic imaging modalities such as CT and MRI with much higher spatial and temporal resolution, and compares favorably to scanning microscopic imaging techniques with much deeper penetration.
    Type: Application
    Filed: November 20, 2012
    Publication date: October 22, 2015
    Inventors: Guosong Hong, Jerry Chung-yu Lee, Ngan Fong Huang, John P. Cooke, Hongjie Dai