Patents by Inventor Jerry Dale Rogers

Jerry Dale Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7470647
    Abstract: Decomposition of methane to produce carbon monoxide-free hydrogen is accomplished using un-supported, nanometer sized, hydrogen reduced, nickel oxide particles made by a precipitation process. A nickel compound, such as NiCl2 or Ni(NO3) is dissolved in water and suitably precipitated as nickel hydroxide. The precipitate is separated, dried and calcined to form the NiO catalyst precursor particles.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: December 30, 2008
    Assignees: GM Global Technology Operations, Inc., Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Mei Cai, Yong Li, Wenjie Shen, Jerry Dale Rogers
  • Patent number: 6992039
    Abstract: A method for uniformly dispersing noble metal particles on a porous carrier by first mixing an alkoxide product of aluminum or silicon and a noble metal precursor together; then mixing a surfactant into the mixture; then mixing ammonia solution into the mixture to form a hydroxide of aluminum or silicon; then mixing a reducing agent into the mixture to convert the noble metal precursor into noble metal nanoparticles dispersed on the hydroxide; then separating the noble metal nanoparticles and the hydroxide from the mixture before calcining the hydroxide into an oxide of aluminum or silicon.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: January 31, 2006
    Assignees: General Motors Corporation, Chinese Academy of Sciences
    Inventors: Long Jiang, Jinru Li, Mei Cai, Jerry Dale Rogers
  • Patent number: 6956007
    Abstract: The present invention provides a method of making a noble metal catalyst, where the noble metal is distributed on the surface of special composite carrier particles. Nanometer sized oxide particles are first dry coated by an impact mixing process on the surface of larger alumina particles. In general, this dry coating process coats the nanometer sized particles on the surface of the alumina particles. A suitable solution of noble metal(s) compound is then soaked on the surface of the composite carrier particles. Ultimately, the noble metal compound is decomposed by calcining and noble metal particles dispersed with large effective surface area on the composite carrier particles. The resultant catalyst structure improves catalyst performance while making efficient and effective use of the expensive noble metal.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: October 18, 2005
    Assignee: General Motors Corporation
    Inventors: Mei Cai, Lee Lizhong Feng, Martin S. Ruthkosky, Jerry Dale Rogers
  • Publication number: 20040180785
    Abstract: A method for uniformly dispersing noble metal particles on a porous carrier by first mixing an alkoxide product of aluminum or silicon and a noble metal precursor together; then mixing a surfactant into the mixture; then mixing ammonia solution into the mixture to form a hydroxide of aluminum or silicon; then mixing a reducing agent into the mixture to convert the noble metal precursor into noble metal nanoparticles dispersed on the hydroxide; then separating the noble metal nanoparticles and the hydroxide from the mixture before calcining the hydroxide into an oxide of aluminum or silicon.
    Type: Application
    Filed: March 13, 2003
    Publication date: September 16, 2004
    Inventors: Long Jiang, Jinru Li, Mei Cai, Jerry Dale Rogers
  • Patent number: 6680279
    Abstract: A method of dispersing nanosized catalyst particles on the surface of larger catalyst carrier particles is disclosed. The coating process is done dry and yields high effective surface area of nanosized catalyst particles coated on the surface of catalyst carrier particles. In this process, nanosized catalyst particles and catalyst carriers are mechanically mixed in a high velocity and impact force environment to which catalyst particles are embedded, or filmed, on the surface of catalyst carrier particles without using water or any other additional chemicals. The catalyst composite structure produced comprises better coating uniformity of the catalyst particle on its catalyst carrier. The catalyst particle/catalyst carrier composite produced can be applied to a support structure, such as a monolith as readily used in automotive or other applications.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: January 20, 2004
    Assignee: General Motors Corporation
    Inventors: Mei Cai, Lee Lizhong Feng, Martin S. Ruthkosky, Jerry Dale Rogers
  • Publication number: 20030139288
    Abstract: An improved method of dispersing nanosized catalyst particles on the surface of larger catalyst carrier particles is disclosed. The coating process used is done dry and yields high effective surface area of nanosized catalyst particles coated on the surface of catalyst carrier particles. In this process, nanosized catalyst particles and catalyst carriers are mechanically mixed in a high velocity and impact force environment to which catalyst particles are embedded, or filmed, on the surface of catalyst carrier particles without using water or any other additional chemicals. The catalyst composite structure produced comprises better coating uniformity of the catalyst particle on its catalyst carrier. The catalyst particle/catalyst carrier composite produced can be applied to a support structure, such as a monolith as readily used in automotive or other applications.
    Type: Application
    Filed: January 24, 2002
    Publication date: July 24, 2003
    Inventors: Mei Cai, Lee Lizhong Feng, Martin S. Ruthkosky, Jerry Dale Rogers