Patents by Inventor Jerry Foster
Jerry Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8900128Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; wherein the image sensor operates at a video frame rate that is twice a standard video frame rate; a laser light source is strobed during capture by the image sensor of alternate video frames; video frames are captured by the image sensor when only the non-laser video illumination illuminates the scanned ear; and images for constructing 3D images are captured by the image sensor only when the strobed laser light illuminates the scanned ear.Type: GrantFiled: August 15, 2012Date of Patent: December 2, 2014Assignee: United Sciences, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Patent number: 8900129Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the display screen coupled for data communications to the image sensor, the display screen displaying images of the scanned ear, the display screen positioned on the otoscanner body in relation to the ear probe so that when the ear probe is positioned for scanning, both the display screen and the ear probe are visible to a operator operating the otoscanner; and a data processor configured to construct a 3D image of the interior of the scanned ear.Type: GrantFiled: August 15, 2012Date of Patent: December 2, 2014Assignee: United Sciences, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Patent number: 8900130Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.Type: GrantFiled: August 15, 2012Date of Patent: December 2, 2014Assignee: United Sciences, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Patent number: 8900125Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.Type: GrantFiled: March 12, 2012Date of Patent: December 2, 2014Assignee: United Sciences, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Patent number: 8900127Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.Type: GrantFiled: August 15, 2012Date of Patent: December 2, 2014Assignee: United Sciences, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20140200408Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.Type: ApplicationFiled: March 18, 2014Publication date: July 17, 2014Applicant: UNITED SCIENCES, LLCInventors: NATHANAEL BERGLUND, HARRIS BERGMAN, SCOTT CAHALL, JERRY FOSTER, EOHAN GEORGE, SAMUEL W. HARRIS, GIORGOS HATZILIAS, KAROL HATZILIAS, RUIZHI HONG, WESS ERIC SHARPE, DAVID G. STITES, HARRY S. STROTHERS, IV
-
Patent number: 8715173Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.Type: GrantFiled: August 15, 2012Date of Patent: May 6, 2014Assignee: United Sciences, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20140031680Abstract: Apparatus and methods for tracking scanner motion with a tracking illumination emitter mounted on a scanner, the scanner including imaging apparatus that captures a sequence of images of a scanned object as the scanner moves with respect to the scanned object; tracking targets installed off the scanner at positions that are fixed relative to a scanned object; one or more tracking illumination sensors mounted on the scanner, the tracking illumination sensors sensing reflections of tracking illumination emitted from the tracking illumination emitter and reflected from the tracking targets as the scanner moves in the process of scanning the scanned object; and one or more data processors, at least one of the data processors coupled for data communications to the tracking illumination sensors, the data processor determining, as the scanner moves, tracked positions of the scanner based upon values of the reflections.Type: ApplicationFiled: September 30, 2013Publication date: January 30, 2014Applicant: UNITED SCIENCES, LLCInventors: NATHANAEL BERGLUND, HARRIS BERGMAN, SCOTT CAHALL, JERRY FOSTER, EOHAN GEORGE, SAMUEL W. HARRIS, GIORGOS HATZILIAS, KAROL HATZILIAS, RUIZHI HONG, WESS E. SHARPE, DAVID G. STITES, HARRY S. STROTHERS, IV
-
Publication number: 20140031701Abstract: Determination of structure-from-motion that includes a scanner body having mounted upon it a tracking illumination emitter and one or more tracking illumination sensors, the tracking illumination sensors disposed upon the scanner body so as to sense reflections of tracking illumination, the scanned object characterized by an object space defined by fixed positions of tracking targets; the scanner body having mounted within it an image sensor, the scanner body characterized by a scanner space, the image sensor coupled for data communications to a data processor and a computer memory, the image sensor and the processor capturing one or more images of the scanned object; and the data processor configured so that it determines by structure-from-motion, based upon the one or more captured images and tracked positions of the probe inferred from reflections of tracking illumination, the location in object space of a feature of the scanned object.Type: ApplicationFiled: September 30, 2013Publication date: January 30, 2014Applicant: UNITED SCIENCES, LLCInventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20130237754Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.Type: ApplicationFiled: March 12, 2012Publication date: September 12, 2013Applicant: 3DM SYSTEMS, INC.Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20130237757Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; wherein the image sensor operates at a video frame rate that is twice a standard video frame rate; a laser light source is strobed during capture by the image sensor of alternate video frames; video frames are captured by the image sensor when only the non-laser video illumination illuminates the scanned ear; and images for constructing 3D images are captured by the image sensor only when the strobed laser light illuminates the scanned ear.Type: ApplicationFiled: August 15, 2012Publication date: September 12, 2013Applicant: 3DM SYSTEMS, INC.Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20130237764Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.Type: ApplicationFiled: August 15, 2012Publication date: September 12, 2013Applicant: 3DM SYSTEMS, INC.Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20130237756Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.Type: ApplicationFiled: August 15, 2012Publication date: September 12, 2013Applicant: 3DM SYSTEMS, INC.Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20130237758Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the display screen coupled for data communications to the image sensor, the display screen displaying images of the scanned ear, the display screen positioned on the otoscanner body in relation to the ear probe so that when the ear probe is positioned for scanning, both the display screen and the ear probe are visible to a operator operating the otoscanner; and a data processor configured to construct a 3D image of the interior of the scanned ear.Type: ApplicationFiled: August 15, 2012Publication date: September 12, 2013Applicant: 3DM SYSTEMS, INC.Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Publication number: 20130237759Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.Type: ApplicationFiled: August 15, 2012Publication date: September 12, 2013Applicant: 3DM SYSTEMS, INC.Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
-
Patent number: 8007664Abstract: A floating dispenser is provided for dispensing a solid, dissolvable water treatment chemical into ambient water. The dispenser includes a bucket having top and bottom ends, a top wall covering the top end, an opening for admitting ambient water into the bucket interior, and a floatation ring that keeps only the top end above water such that the interior is water filled when the dispenser floats. A basket is disposed in the interior of the bucket for carrying a solid, dissolvable water treatment chemical, such as calcium hypochlorite. The basket is buoyant and movable vertically toward the top wall of the bucket. The dispenser includes a refill indicator that indicates when most of a full load of said chemical has dissolved. The refill indicator includes a pair of tabs that are connected to the basket and slidably mounted in slots in the top wall.Type: GrantFiled: September 5, 2008Date of Patent: August 30, 2011Assignees: Chemtura Corporation, Slingshot Product Development GroupInventors: Christopher Reed, Nidhi Rawat, Melissa Hickman, Jeffrey N. Smith, Jerry Foster, Matthew Gabriel, Greg Harding, H. Shaw Strothers, IV, Allison Guyton, Noah McNeely
-
Publication number: 20100059421Abstract: A floating dispenser is provided for dispensing a solid, dissolvable water treatment chemical into ambient water. The dispenser includes a bucket having top and bottom ends, a top wall covering the top end, an opening for admitting ambient water into the bucket interior, and a floatation ring that keeps only the top end above water such that the interior is water filled when the dispenser floats. A basket is disposed in the interior of the bucket for carrying a solid, dissolvable water treatment chemical, such as calcium hypochlorite. The basket is buoyant and movable vertically toward the top wall of the bucket. The dispenser includes a refill indicator that indicates when most of a full load of said chemical has dissolved. The refill indicator includes a pair of tabs that are connected to the basket and slidably mounted in slots in the top wall.Type: ApplicationFiled: September 5, 2008Publication date: March 11, 2010Applicant: CHEMTURA CORPORATIONInventors: Christopher Reed, Nidhi Rawat, Melissa Hickman, Jeffrey N. Smith, Jerry Foster, Matthew Gabriel, Greg Harding, H. Shaw Strothers, IV, Allison Guyton, Noah McNeely
-
Publication number: 20090171702Abstract: An application for a computer-based method for managing a property includes providing a server computer system and a client computer system. A list of maintainable inventory items is accepted at the client computer system and sent from the client computer system to the server computer system where the list of the maintainable inventory items is processed. The processing includes generating maintenance tasks relating to the list of the maintainable inventory items based upon a set of maintenance procedures. The maintenance tasks are then tracked at the server computer system.Type: ApplicationFiled: December 27, 2007Publication date: July 2, 2009Applicant: FOSTERGLISSON, INCORPORATEDInventors: Jerry Foster, JR., Susan J. Foster, Timothy S. Glisson
-
Publication number: 20070151732Abstract: A downhole impact generator (60) is adapted to be moved to a target location within a wellbore (68) for transmitting a jarring force to a well tool (72) positioned in the wellbore (68). The downhole impact generator (60) includes a downhole power unit (62) having a moveable shaft (66) and a jarring tool (64). The jarring tool (64) is operably engageable with the well tool (72) and is operably coupled with the moveable shaft (66) of the downhole power unit (62) such that when the jarring tool (64) is operably engaged with the well tool (72), linear movement of the moveable shaft (66) energizes the jarring tool (64) such that a jarring force can be transmitted by the jarring tool (64) to the well tool (72).Type: ApplicationFiled: January 5, 2006Publication date: July 5, 2007Inventors: Jack Clemens, Jerry Foster, Robert Thurman
-
Publication number: 20070137897Abstract: A directional drilling mechanism is disclosed. The mechanism is also an impact drill.Type: ApplicationFiled: December 16, 2005Publication date: June 21, 2007Inventors: Michael Sanders, Jerry Foster, Duane Bennett