Patents by Inventor Jerry L. Petersen

Jerry L. Petersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9108729
    Abstract: A control module for an unmanned aerial vehicle is provided. In one example, the control module includes a plurality of control modes, wherein each control mode represents a different autonomy setting, a command generator configured to generate a command causing a selection of a first of the plurality of control modes for the unmanned aerial vehicle, and an intelligence synthesizer that automatically switches the unmanned aerial vehicle between the selected first of the plurality of control modes and a second of the plurality of control mode upon detection of a trigger event.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: August 18, 2015
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20140324253
    Abstract: A control module for an unmanned aerial vehicle is provided. In one example, the control module includes a plurality of control modes, wherein each control mode represents a different autonomy setting, a command generator configured to generate a command causing a selection of a first of the plurality of control modes for the unmanned aerial vehicle, and an intelligence synthesizer that automatically switches the unmanned aerial vehicle between the selected first of the plurality of control modes and a second of the plurality of control mode upon detection of a trigger event.
    Type: Application
    Filed: May 15, 2014
    Publication date: October 30, 2014
    Applicant: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8768555
    Abstract: An autonomous control system for an unmanned aerial vehicle is provided. In one example, the control system includes a first control mode component configured to generate a first command to provide a first autonomous control mode for the unmanned aerial vehicle, a second control mode component configured to generate a second command to provide a second autonomous control mode for the unmanned aerial vehicle, and an intelligence synthesizer configured to resolve functional conflicts between the first and second autonomous control modes.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 1, 2014
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20130345920
    Abstract: An autonomous control system for an unmanned aerial vehicle is provided. In one example, the control system includes a first control mode component configured to generate a first command to provide a first autonomous control mode for the unmanned aerial vehicle, a second control mode component configured to generate a second command to provide a second autonomous control mode for the unmanned aerial vehicle, and an intelligence synthesizer configured to resolve functional conflicts between the first and second autonomous control modes.
    Type: Application
    Filed: December 4, 2012
    Publication date: December 26, 2013
    Applicant: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8355834
    Abstract: Multi-sensor autonomous control of unmanned aerial vehicles systems and methods are disclosed herein. In one embodiment, a variable autonomy control system for an unmanned aerial vehicle include a variable autonomy processing unit. The variable autonomy processing unit illustratively receives inputs from multiple sensors. It utilizes the inputs to generate commands to control the unmanned aerial vehicle at variable autonomy levels.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: January 15, 2013
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8103398
    Abstract: Unmanned aerial vehicle control systems are disclosed herein. In one embodiment, a method of controlling an unmanned aerial vehicle includes transmitting an indication of a take-off or landing location to the unmanned aerial vehicle. The unmanned aerial vehicle is launched. A control mode of the unmanned aerial vehicle is switched from an autonomous mode to a manual mode. The control mode of the unmanned aerial vehicle is switched from the manual mode to another autonomous mode, and the unmanned aerial vehicle is landed at the landing location.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 24, 2012
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8082074
    Abstract: An unmanned aerial vehicle variable autonomy control system is disclosed herein. In one embodiment, the system includes a control mode interface that provides a plurality of selectable control modes for an unmanned aerial vehicle, wherein one of the plurality of selectable control modes comprises a target tracking mode. Also included is a target editor interface provided in response to a selection of the target tracking mode, wherein the target editor interface facilitates receipt of an input indicative of a ground based moving target. The system also includes a communications component that transmits a command to the unmanned aerial vehicle, wherein the command is based at least in part on the input indicative of a target.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 20, 2011
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8068950
    Abstract: Unmanned aerial vehicle take-off and landing systems are disclosed herein. In one embodiment, a method of landing an unmanned aerial vehicle includes programming a landing location for the unmanned aerial vehicle utilizing a user input device. The unmanned aerial vehicle is launched. Communications between the unmanned aerial vehicle and the user input device are interrupted, and the unmanned aerial vehicle is landed at the landing location based on the programmed landing location and not based on any real-time communication between the unmanned aerial vehicle and the user input device.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 29, 2011
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8068949
    Abstract: An unmanned aerial vehicle variable autonomy control system is disclosed. In one embodiment, the system includes a control mode interface that provides a plurality of selectable control modes for an unmanned aerial vehicle, wherein one of the plurality of selectable control modes comprises an autonomous landing mode. Also included is a route editing interface that, following a selection of the autonomous landing mode, facilitates a receipt of an input indicative of a landing location. The system also includes a communications component that transmits a command to the unmanned aerial vehicle, wherein the command is based at least in part on the input indicative of the landing location.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 29, 2011
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20110184590
    Abstract: Unmanned aerial vehicle take-off and landing systems are disclosed herein. In one embodiment, a method of landing an unmanned aerial vehicle includes programming a landing location for the unmanned aerial vehicle utilizing a user input device. The unmanned aerial vehicle is launched. Communications between the unmanned aerial vehicle and the user input device are interrupted, and the unmanned aerial vehicle is landed at the landing location based on the programmed landing location and not based on any real-time communication between the unmanned aerial vehicle and the user input device.
    Type: Application
    Filed: November 30, 2010
    Publication date: July 28, 2011
    Applicant: Geneva Aerospace
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20110130913
    Abstract: Unmanned aerial vehicle control systems are disclosed herein. In one embodiment, a method of controlling an unmanned aerial vehicle includes transmitting an indication of a take-off or landing location to the unmanned aerial vehicle. The unmanned aerial vehicle is launched. A control mode of the unmanned aerial vehicle is switched from an autonomous mode to a manual mode. The control mode of the unmanned aerial vehicle is switched from the manual mode to another autonomous mode, and the unmanned aerial vehicle is landed at the landing location.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Applicant: Geneva Aerospace
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20100292874
    Abstract: An unmanned aerial vehicle variable autonomy control system is disclosed. In one embodiment, the system includes a control mode interface that provides a plurality of selectable control modes for an unmanned aerial vehicle, wherein one of the plurality of selectable control modes comprises an autonomous landing mode. Also included is a route editing interface that, following a selection of the autonomous landing mode, facilitates a receipt of an input indicative of a landing location. The system also includes a communications component that transmits a command to the unmanned aerial vehicle, wherein the command is based at least in part on the input indicative of the landing location.
    Type: Application
    Filed: February 25, 2010
    Publication date: November 18, 2010
    Applicant: GENEVA AEROSPACE
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20100292873
    Abstract: An unmanned aerial vehicle variable autonomy control system is disclosed herein. In one embodiment, the system includes a control mode interface that provides a plurality of selectable control modes for an unmanned aerial vehicle, wherein one of the plurality of selectable control modes comprises a target tracking mode. Also included is a target editor interface provided in response to a selection of the target tracking mode, wherein the target editor interface facilitates receipt of an input indicative of a ground based moving target. The system also includes a communications component that transmits a command to the unmanned aerial vehicle, wherein the command is based at least in part on the input indicative of a target.
    Type: Application
    Filed: February 25, 2010
    Publication date: November 18, 2010
    Applicant: GENEVA AEROSPACE
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Publication number: 20090125163
    Abstract: Embodiments are disclosed for a vehicle control system and related sub-components that together provide an operator with a plurality of specific modes of operation, wherein various modes of operation incorporate different levels of autonomous control. Through a control user interface, an operator can move between certain modes of control even after vehicle deployment. Specialized autopilot system components and methods are employed to ensure smooth transitions between control modes. Empowered by the multi-modal control system, an operator can even manage multiple vehicles simultaneously.
    Type: Application
    Filed: January 9, 2008
    Publication date: May 14, 2009
    Applicant: Geneva Aerospace
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 7343232
    Abstract: Embodiments are disclosed for a vehicle control system and related sub-components that together provide an operator with a plurality of specific modes of operation, wherein various modes of operation incorporate different levels of autonomous control. Through a control user interface, an operator can move between certain modes of control even after vehicle deployment. Specialized autopilot system components and methods are employed to ensure smooth transitions between control modes. Empowered by the multi-modal control system, an operator can even manage multiple vehicles simultaneously.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: March 11, 2008
    Assignee: Geneva Aerospace
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee