Patents by Inventor Jerry Lee Kisabeth

Jerry Lee Kisabeth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6993433
    Abstract: The present invention is a method for determining a parameter of interest of a region of interest of the earth. At least one component of potential fields data is measured at a plurality of locations over a region of interest including a subterranean formation of interest. The potential fields data are selected from magnetic data and gravity data. An initial geophysical model is determined for the region including the subterranean formation of interest. For the model, geophysical tensor data is updated using a forward model at a plurality of locations using a High Order Compact Finite Difference method. A difference between the estimated model value and the measured value of the potential field measurements are determined, and the geophysical model is updated. The model is iteratively updated and compared to the measured data until the differences reach an acceptable level and the parameter of interest has been determined.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: January 31, 2006
    Assignee: ConocoPhillips Company
    Inventors: Juan Andres Chavarria, Partha Sarathi Routh, Jerry Lee Kisabeth, Gregory Joseph Jorgensen
  • Publication number: 20040172199
    Abstract: The present invention is a method for determining a parameter of interest of a region of interest of the earth. At least one component of potential fields data is measured at a plurality of locations over a region of interest including a subterranean formation of interest. The potential fields data are selected from magnetic data and gravity data. An initial geophysical model is determined for the region including the subterranean formation of interest. For the model, geophysical tensor data is updated using a forward model at a plurality of locations using a High Order Compact Finite Difference method. A difference between the estimated model value and the measured value of the potential field measurements are determined, and the geophysical model is updated. The model is iteratively updated and compared to the measured data until the differences reach an acceptable level and the parameter of interest has been determined.
    Type: Application
    Filed: October 8, 2003
    Publication date: September 2, 2004
    Applicant: ConocoPhillips Company
    Inventors: Juan Andres Chavarria, Partha Sarathi Routh, Jerry Lee Kisabeth, Gregory Joseph Jorgensen
  • Patent number: 6675097
    Abstract: The present invention is a method for determining a parameter of interest of a region of interest of the earth using tensor data. At least one component of potential fields data is measured at a plurality of locations over a region of interest including a subterranean formation of interest. The potential fields data are selected from magnetic data and gravity data. An initial geophysical model is determined for the region including the subterranean formation of interest. For the model, geophysical tensor data is updated using a forward model at a plurality of locations using an interior method for constrained optimization. A difference between the estimated model value and the measured value of the potential field measurements are determined at the plurality of locations. Based on the this difference the geophysical model is updated. The model is iteratively updated and compared to the measured data until the differences reach an acceptable level and the parameter of interest has been determined.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 6, 2004
    Assignee: Conoco Inc.
    Inventors: Partha Sarathi Routh, Jerry Lee Kisabeth, Gregory Joseph Jorgensen
  • Publication number: 20030060981
    Abstract: The present invention is a method for determining a parameter of interest of a region of interest of the earth using tensor data. At least one component of potential fields data is measured at a plurality of locations over a region of interest including a subterranean formation of interest. The potential fields data are selected from magnetic data and gravity data. An initial geophysical model is determined for the region including the subterranean formation of interest. For the model, geophysical tensor data is updated using a forward model at a plurality of locations using an interior method for constrained optimization. A difference between the estimated model value and the measured value of the potential field measurements are determined at the plurality of locations. Based on the this difference the geophysical model is updated. The model is iteratively updated and compared to the measured data until the differences reach an acceptable level and the parameter of interest has been determined.
    Type: Application
    Filed: September 6, 2002
    Publication date: March 27, 2003
    Applicant: Conoco Inc.
    Inventors: Partha Sarathi Routh, Jerry Lee Kisabeth, Gregory Joseph Jorgensen
  • Patent number: 6502037
    Abstract: A method for modeling geological structures includes obtaining seismic data and using these data to derive an initial density model. Potential fields data is used to update the initial geophysical model by an inversion process using vector or tensor components of gravity and/or magnetic data. In regions having an anomalous density zone, the initial model includes a topographic or bathymetric surface and a 2D or 3D density model including the top of any zones of anomalous density. Potential fields data is then used to derive the lower boundary of the anomalous density zones by using an inversion process. The final density model from the inversion may be further refined using the seismic data in conjunction with the model obtained by inversion of the potential fields data. The model data are integrated two or three dimensions to determine an overburden stress for the subsurface that includes a proper treatment of the anomalous density zone.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: December 31, 2002
    Assignee: Conoco Inc.
    Inventors: Gregory Joseph Jorgensen, Jerry Lee Kisabeth, Alan Royce Huffman, John B. Sinton, David W. Bell
  • Patent number: 6430507
    Abstract: A method for determining formation pore pressure uses seismic data to derive an initial density model. Potential fields data are then used to derive the lower boundary of anomalous density zones (e.g., salt, shale diapirs, igneous or magmatic formations) by an inversion process. The model data are integrated vertically in two or three dimensions to determine an overburden stress for the subsurface that includes a proper treatment of the anomalous density zone. The velocity measurements determined from the seismic data are used to determine the effective stress based on appropriate relationships between effective stress and velocity. The fluid pressure is then obtained as the difference between the overburden stress and the effective stress.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: August 6, 2002
    Assignee: Conoco Inc.
    Inventors: Gregory Joseph Jorgensen, Jerry Lee Kisabeth, Alan Royce Huffman
  • Patent number: 6424918
    Abstract: A method for modeling geological structures beneath anomalous density zones includes receiving seismic data and using this data to derive the top of a geologic model. Non-seismic data, such as gravity or magnetic data are used to derive the lower boundary of the geologic model in an inversion process. In one embodiment, the predicted parameters are combined with seismic data to obtain a depth image and to derive a velocity model in delineating formations of interest. In another embodiment, the processed seismic data is used to further constrain the inversion of the non-seismic data. Another novel aspect of the invention is the filtering of the non-seismic data during the inversion process in a manner that is consistent with Laplace's equation.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 23, 2002
    Assignee: Conoco Inc.
    Inventors: Gregory Joseph Jorgensen, Jerry Lee Kisabeth, Alan Royce Huffman, John B. Sinton, David W. Bell
  • Patent number: 6278948
    Abstract: A method for modeling geological zones having anomalous density includes determining the top of the anomalous zone from non-potential fields data. Potential fields data is then used to derive the lower boundary of the geologic anomalous zone. A lower boundary to a anomalous zone is formulated by predicting parameters representing the lower boundary within predetermined limits. This is done by using an inversion process on the potential fields data, such as measurements of gravity data, magnetic data. These may be in both vector and tensor form. The potential fields data is compared to the predicted fields from the results of the inversion process to obtain a difference between the two. If the difference exceeds a predetermined value, the parameters representing the anomalous zone are adjusted to improve the fit. When the lower boundary limits are reached or the difference between the model and the data is less than the predetermined value or convergence is attained, the anomalous zone has been determined.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: August 21, 2001
    Assignee: Conoco Inc.
    Inventors: Gregory Joseph Jorgensen, Jerry Lee Kisabeth