Patents by Inventor Jerry R. Meyer
Jerry R. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12206033Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.Type: GrantFiled: August 2, 2022Date of Patent: January 21, 2025Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Edward H. Aifer, Jerry R. Meyer, Chadwick Lawrence Canedy, Igor Vurgaftman, Jill A. Nolde
-
Patent number: 11761892Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: September 19, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20230261442Abstract: Semiconductor laser architectures that provide weak index guiding of interband cascade lasers (ICLs) processed on a native III-V substrate and of ICLs grown on GaAs or integrated on GaAs by heterogeneous bonding. Weak index guiding of a ridge waveguide semiconductor laser can enhance the stability of lasing in the fundamental lateral mode, so as to allow a wider ridge to maintain stable single-lateral-mode operation.Type: ApplicationFiled: February 8, 2023Publication date: August 17, 2023Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Alexander Spott, Vijaysekhar Jayaraman, Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley, Igor Vurgaftman
-
Patent number: 11719633Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: August 8, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chui Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11719634Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: August 8, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11709135Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: July 25, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NawInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chui Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20230231364Abstract: Semiconductor laser architectures that provide weak index guiding of interband cascade lasers (ICLs) processed on a native III-V substrate and of ICLs grown on silicon or integrated on silicon by heterogeneous bonding. Weak index guiding of a ridge waveguide semiconductor laser can enhance the stability of lasing in the fundamental lateral mode, so as to allow a wider ridge to maintain stable single-lateral-mode operation.Type: ApplicationFiled: January 4, 2023Publication date: July 20, 2023Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Alexander Spott, Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley, Igor Vurgaftman
-
Patent number: 11703453Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: July 18, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11698341Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: July 11, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11680901Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: June 20, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20230178667Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.Type: ApplicationFiled: August 2, 2022Publication date: June 8, 2023Inventors: Edward H. Aifer, Jerry R. Meyer, Chadwick Lawrence Canedy, Igor Vurgaftman, Jill A. Nolde
-
Patent number: 11662310Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: May 30, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11619583Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: April 4, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11573178Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: August 20, 2021Date of Patent: February 7, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
DETUNED ANTINODE ENHANCEMENT FOR IMPROVED TEMPERATURE INDEPENDENCE IN INFRARED LIGHT EMITTING DIODES
Publication number: 20220375905Abstract: Improved temperature independence in infrared light emitting diodes (IRLEDs). The active stage groups (ASGs) occur at or at an integer multiple of each antinode of the e-field of the desired center wavelength. The structure is designed to yield increased efficiency at low (cryogenic) temperatures with a wide range of operational temperature independence. The structure may be designed to provide a wide range of temperature independent operation near room temperature. The spacing (S) between the centers of the active stage groups may be varied to create a more broad and shallow peak of the temperature dependence of the antinode enhancement. The IRLED may be an interband cascade LED.Type: ApplicationFiled: May 10, 2022Publication date: November 24, 2022Inventors: Joseph D LaVeigne, Thomas E Danielson, Igor Vurgaftman, Chadwick L Canedy, Mijin Kim, Chul Soo Kim, William W Bewley, Charles D Merritt, Jerry R Meyer -
Patent number: 11404591Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.Type: GrantFiled: July 29, 2019Date of Patent: August 2, 2022Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Edward H. Aifer, Jerry R. Meyer, Chadwick Lawrence Canedy, Igor Vurgaftman, Jill A. Nolde
-
Publication number: 20210404957Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 30, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. MEYER, Igor VURGAFTMAN, Chadwick Lawrence CANEDY, William W. BEWLEY, Chul Soo KIM, Charles D. MERRITT, Michael V. WARREN, R. Joseph WEIBLEN, Mijin KIM
-
Publication number: 20210396665Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 23, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20210396668Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 23, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20210396667Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 23, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim