Patents by Inventor Jesper Gromada

Jesper Gromada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977081
    Abstract: The present invention provides ELISA-based methods for detecting and/or quantifying ANGPTL8 in biological samples using anti-ANGPTL8 antibodies.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: May 7, 2024
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Viktoria Gusarova, Jesper Gromada, Andrew J. Murphy
  • Publication number: 20240141305
    Abstract: Provided are compositions related to HSD17B13 variants, including nucleic acid molecules and polypeptides related to variants of HSD17B13, and cells comprising those nucleic acid molecules and polypeptides. Also provided are methods related to HSD17B13 variants. Such methods include methods for detecting the presence of the HSD17B13 rs72613567 variant in a biological sample comprising genomic DNA, for detecting the presence or levels of any one of variant HSD17B13 Transcripts C, D, E, F, G, and H, and particularly D, in a biological sample comprising mRNA or cDNA, or for detecting the presence or levels of any one of variant HSD17B13 protein Isoforms C, D, E, F, G, or H, and particularly D, in a biological sample comprising protein. Also provided are methods for determining a subject's susceptibility to developing a liver disease or of diagnosing a subject with liver disease.
    Type: Application
    Filed: October 17, 2023
    Publication date: May 2, 2024
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Publication number: 20240091301
    Abstract: The present invention provides apelin receptor (APLNR) modulators that bind to APLNR and methods of using the same. The invention includes APLNR modulators such as antibodies, or antigen-binding fragments thereof, which inhibit or attenuate APLNR-mediated signaling. The invention includes APLNR modulators such as antibodies, or antibody fusion proteins thereof, that activate APLNR-mediated signaling. According to certain embodiments of the invention, the antibodies or antigen-binding fragments or antibody fusion proteins are fully human antibodies that bind to human APLNR with high affinity. The APLNR modulators of the invention are useful for the treatment of diseases and disorders associated with APLNR signaling and/or APLNR cellular expression, such as cardiovascular diseases, angiogenesis diseases, metabolic diseases and fibrotic diseases.
    Type: Application
    Filed: March 23, 2023
    Publication date: March 21, 2024
    Inventors: Panayiotis Stevis, Andrew J. Murphy, Jesper Gromada, Yonaton Ray, Jee H. Kim, Ivan B. Lobov
  • Publication number: 20240059780
    Abstract: The present invention provides monoclonal antibodies that bind to the natriuretic peptide receptor 1 (NPR1) protein, and methods of use thereof. In various embodiments of the invention, the antibodies are fully human antibodies that bind to NPR1. In some embodiments, the antibodies of the invention are useful for activating NPR1 activity, thus providing a means of treating or preventing a disease, disorder or condition associated with NPR1 in humans.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 22, 2024
    Inventors: Michael E. DUNN, Jia SU, Jason MASTAITIS, Jesper GROMADA, Lori C. MORTON
  • Publication number: 20240024428
    Abstract: The present invention provides modified glucagon-like peptide 1 (GLP1) polypeptides, fusion proteins comprising modified GLP1 polypeptides, and methods of use thereof. In various embodiments of the invention, the fusion proteins are GLP1 receptor agonists that comprise a modified GLP1 fused to a stabilizing domain. In some embodiments, the fusion proteins comprising modified GLP1 are useful for treating or ameliorating a symptom or indication of a disorder such as obesity and diabetes.
    Type: Application
    Filed: August 29, 2023
    Publication date: January 25, 2024
    Inventors: Yang Wei, Haruka Okamoto, Jesper Gromada, Samuel Davis, Andrew J. Murphy
  • Publication number: 20230416384
    Abstract: Provided herein are methods of treating a patient with severe insulin resistance. The methods comprise administering to a patient in need thereof a therapeutic amount of a GCG/GCGR signaling pathway inhibitor, such that blood glucose or beta-hydroxybutyrate levels are lowered or that the severe insulin resistance is mediated, or a condition or disease characterized by severe insulin resistance is mediated, or at least one symptom or complication associated with the condition or disease is alleviated or reduced in severity. The GCG/GCGR signaling pathway inhibitor can be a small molecule inhibitor of the signaling pathway, an antisense inhibitor of the signaling pathway, a GCG neutralizing monoclonal antibody, a GCGR antagonist, a peptide inhibitor of the signaling pathway, a DARPin, a Spiegelmer, an aptamer, engineered Fn type-III domains, etc. The therapeutic methods are useful for treating a human suffering from severe insulin resistance.
    Type: Application
    Filed: June 5, 2023
    Publication date: December 28, 2023
    Inventors: Jesper Gromada, Haruka Okamoto, Stephen Jaspers, Joyce Harp
  • Patent number: 11845963
    Abstract: Provided are compositions related to HSD17B13 variants, including nucleic acid molecules and polypeptides related to variants of HSD17B13, and cells comprising those nucleic acid molecules and polypeptides. Also provided are methods related to HSD17B3 variants. Such methods include methods for detecting the presence of the HSD17B13 rs72613567 variant in a biological sample comprising genomic DNA, for detecting the presence or levels of any one of variant HSD17B13 Transcripts C, D, E, F, G, and H, and particularly D, in a biological sample comprising mRNA or cDNA, or for detecting the presence or levels of any one of variant HSD17B13 protein Isoforms C, D, E, F, G, or H, and particularly D, in a biological sample comprising protein. Also provided are methods for determining a subject's susceptibility to developing a liver disease or of diagnosing a subject with liver disease.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: December 19, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Patent number: 11834500
    Abstract: The present invention relates to antigen-binding molecules, including bispecific antigen-binding molecules that bind human GP130 and/or human leptin receptor (LEPR), and the use of such antigen-binding molecules for the treatment of conditions and disorders related to leptin deficiency or leptin resistance. The bispecific antigen-binding molecules of the present invention can be, e.g., bispecific antibodies comprising a first antigen-binding domain that specifically binds human GP130 and a second antigen-binding domain that specifically binds human LEPR. The bispecific antigen-binding molecules of the present invention are useful in therapeutic applications where induced leptin and/or LEPR-mediated signaling would be beneficial, e.g., in the treatment of obesity, lipodystrophies and other diseases and disorders associated with or caused by leptin deficiency or leptin resistance.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 5, 2023
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Jesper Gromada, Panayiotis Stevis, Judith Altarejos
  • Publication number: 20230383353
    Abstract: The disclosure provides methods of identifying a human subject as a candidate for treating or inhibiting a liver disease by inhibiting HSD17B13. The disclosure also provides methods of treating a subject who is PNPLA3 Ile148Met+ by administering an inhibitor of HSD17B13. The disclosure also provides method of detecting a PNPLA3 Ile148Met variant and functional HSD17B13 in a subject. The disclosure also provides method of identifying a subject having a protective effect against liver disease. The disclosure also provides inhibitors of HSD17B13 for use in the treatment of a liver disease.
    Type: Application
    Filed: May 30, 2023
    Publication date: November 30, 2023
    Inventors: Yurong Xin, Jesper Gromada, Xiping Cheng, Frederick Dewey, Tanya Teslovich Dostal, Claudia Schurmann, Aris Baras, Noura Abul-Husn
  • Patent number: 11820826
    Abstract: The present invention provides monoclonal antibodies that bind to the natriuretic peptide receptor 1 (NPR1) protein, and methods of use thereof. In various embodiments of the invention, the antibodies are fully human antibodies that bind to NPR1. In some embodiments, the antibodies of the invention are useful for activating NPR1 activity, thus providing a means of treating or preventing a disease, disorder or condition associated with NPR1 in humans.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: November 21, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Michael E. Dunn, Jia Su, Jason Mastaitis, Jesper Gromada, Lori C. Morton
  • Patent number: 11779633
    Abstract: The present invention provides modified glucagon-like peptide 1 (GLP1) polypeptides, fusion proteins comprising modified GLP1 polypeptides, and methods of use thereof. In various embodiments of the invention, the fusion proteins are GLP1 receptor agonists that comprise a modified GLP1 fused to a stabilizing domain. In some embodiments, the fusion proteins comprising modified GLP1 are useful for treating or ameliorating a symptom or indication of a disorder such as obesity and diabetes.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: October 10, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Yang Wei, Haruka Okamoto, Jesper Gromada, Samuel Davis, Andrew J. Murphy
  • Publication number: 20230312699
    Abstract: The present invention provides antibodies that bind to Activin A and methods of using the same. According to certain embodiments of the invention, the antibodies are fully human antibodies that bind to Activin A with high affinity. The antibodies of the invention are useful for the treatment of diseases and disorders characterized by decreased muscle mass or strength, such as sarcopenia, cachexia, muscle injury, muscle wasting/atrophy, cancer, fibrosis, and weight loss. The antibodies of the invention are also useful in combination with Growth and Differentiation Factor 8 (GDF8) binding proteins for the treatment of diseases and disorders characterized by decreased muscle mass or strength. The antibodies of the invention are also useful for the prevention, treatment, or amelioration of disorders and diseases caused by, promoted by, exacerbated by, and/or aggravated by Activin A, such as renal fibrosis.
    Type: Application
    Filed: November 28, 2022
    Publication date: October 5, 2023
    Inventors: Jesper Gromada, Esther Latres, Andrew J. Murphy, George D. Yancopoulos, Lori C. Morton
  • Patent number: 11753628
    Abstract: Provided are compositions related to HSD17B13 variants, including nucleic acid molecules and polypeptides related to variants of HSD17B13, and cells comprising those nucleic acid molecules and polypeptides. Also provided are methods related to HSD17B13 variants. Such methods include methods for detecting the presence of the HSD17B13 rs72613567 variant in a biological sample comprising genomic DNA, for detecting the presence or levels of any one of variant HSD17B13 Transcripts C, D, E, F, G, and H, and particularly D, in a biological sample comprising mRNA or cDNA, or for detecting the presence or levels of any one of variant HSD17B13 protein Isoforms C, D, E, F, G, or H, and particularly D, in a biological sample comprising protein. Also provided are methods for determining a subject's susceptibility to developing a liver disease or of diagnosing a subject with liver disease.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: September 12, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Noura S. Abul-Husn, Omri Gottesman, Alexander Li, Xiping Cheng, Yurong Xin, Jesper Gromada, Frederick E. Dewey, Aris Baras, Alan Shuldiner
  • Patent number: 11730150
    Abstract: Provided are non-human animals comprising a mutation in the Fbn1 gene to model neonatal progeroid syndrome with congenital lipodystrophy (NPSCL). Also provided are methods of making such non-human animal models. The non-human animal models can be used for screening compounds for activity in inhibiting or reducing NPSCL or ameliorating NPSCL-like symptoms or screening compounds for activity potentially harmful in promoting or exacerbating NPSCL as well as to provide insights in to the mechanism of NPSCL and potentially new therapeutic and diagnostic targets.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 22, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Jason Mastaitis, Guochun Gong, Ka-Man Venus Lai, Jesper Gromada, Aris N. Economides
  • Publication number: 20230235068
    Abstract: The present invention provides antibodies and antigen-binding fragments of antibodies that bind to leptin receptor (LEPR), and methods of using the same. According to certain embodiments, the invention includes antibodies and antigen-binding fragments of antibodies that bind LEPR and antagonize LEPR signaling. In certain embodiments, the invention includes antibodies and antigen-binding fragments of antibodies that bind LEPR in the presence or absence of leptin. In other embodiments, the invention includes antibodies and antigen-binding fragments of antibodies that exhibit partial agonism of LEPR signaling.
    Type: Application
    Filed: November 17, 2022
    Publication date: July 27, 2023
    Inventors: Jesper Gromada, Panayiotis Stevis, Judith Altarejos
  • Patent number: 11708416
    Abstract: Provided herein are methods of treating a patient with severe insulin resistance. The methods comprise administering to a patient in need thereof a therapeutic amount of a GCG/GCGR signaling pathway inhibitor, such that blood glucose or beta-hydroxybutyrate levels are lowered or that the severe insulin resistance is mediated, or a condition or disease characterized by severe insulin resistance is mediated, or at least one symptom or complication associated with the condition or disease is alleviated or reduced in severity. The GCG/GCGR signaling pathway inhibitor can be a small molecule inhibitor of the signaling pathway, an antisense inhibitor of the signaling pathway, a GCG neutralizing monoclonal antibody, a GCGR antagonist, a peptide inhibitor of the signaling pathway, a DARPin, a Spiegelmer, an aptamer, engineered Fn type-III domains, etc. The therapeutic methods are useful for treating a human suffering from severe insulin resistance.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: July 25, 2023
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Jesper Gromada, Haruka Okamoto, Stephen Jaspers, Joyce Harp
  • Patent number: 11702700
    Abstract: The disclosure provides methods of identifying a human subject as a candidate for treating or inhibiting a liver disease by inhibiting HSD17B13. The disclosure also provides methods of treating a subject who is PNPLA3 Ile148Met+ by administering an inhibitor of HSD17B13. The disclosure also provides method of detecting a PNPLA3 Ile148Met variant and functional HSD17B13 in a subject. The disclosure also provides method of identifying a subject having a protective effect against liver disease. The disclosure also provides inhibitors of HSD17B13 for use in the treatment of a liver disease.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: July 18, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Yurong Xin, Jesper Gromada, Xiping Cheng, Frederick Dewey, Tanya Teslovich Dostal, Claudia Schurmann, Aris Baras, Noura Abul-Husn
  • Patent number: 11642390
    Abstract: The present invention provides apelin receptor (APLNR) modulators that bind to APLNR and methods of using the same. The invention includes APLNR modulators such as antibodies, or antigen-binding fragments thereof, which inhibit or attenuate APLNR-mediated signaling. The invention includes APLNR modulators such as antibodies, or antibody fusion proteins thereof, that activate APLNR-mediated signaling. According to certain embodiments of the invention, the antibodies or antigen-binding fragments or antibody fusion proteins are fully human antibodies that bind to human APLNR with high affinity. The APLNR modulators of the invention are useful for the treatment of diseases and disorders associated with APLNR signaling and/or APLNR cellular expression, such as cardiovascular diseases, angiogenesis diseases, metabolic diseases and fibrotic diseases.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 9, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Panayiotis Stevis, Andrew J. Murphy, Jesper Gromada, Yonaton Ray, Jee H. Kim, Ivan B. Lobov
  • Patent number: 11608381
    Abstract: Provided herein are therapeutic methods of treatment using agonist leptin receptor (LEPR) antibodies, antigen-binding fragments thereof, or compositions comprising the LEPR antibodies or antigen-binding fragments thereof. Such therapeutic methods include treatment for conditions related to metabolic dysfunction, including for example, lipodystrophy, adiposity or obesity, reducing body weight, non-alcoholic fatty liver disease, hyperphagia, hyperglycemia, insulin resistance, dyslipidemia, hepatic steatosis, and infertility.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: March 21, 2023
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Jesper Gromada, Panayiotis Stevis, Judith Altarejos, Andrew J. Murphy
  • Publication number: 20230079407
    Abstract: Provided herein are antibodies and antigen-binding fragments that bind MSR1 and methods of use thereof. According to certain embodiments, the antibodies bind human MSR1 with high affinity. In certain embodiments, the antibodies bind MSR1 without blocking, or blocking less than 90%, of modified LDL binding to MSR1. In some embodiments, the antibodies bind cell surface expressed-MSR1 and are internalized. The antibodies of the invention may be fully human antibodies. The invention includes anti-MSR1 antibodies, or antigen-binding fragments thereof, conjugated to drugs or therapeutic compounds.
    Type: Application
    Filed: April 22, 2022
    Publication date: March 16, 2023
    Inventors: Jesper GROMADA, Viktoria GUSAROVA, Amy HAN, Sokol HAXHINASTO, Christos KYRATSOUS, Andrew J. MURPHY, Thomas NITTOLI, William OLSON, Matthew SLEEMAN, Anna ZUMSTEG