Patents by Inventor Jess Michael Goldfinger

Jess Michael Goldfinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9133031
    Abstract: A carbon nanostructure that is free of a growth substrate adhered to the carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. Carbon nanostructures can be agglomerated with one another and densified to form a carbon nanostructure layer in which at least a portion of the carbon nanotubes in each carbon nanostructure are aligned substantially parallel to one another. Methods for forming a carbon nanostructure layer can include providing a plurality of carbon nanostructures that are free of a growth substrate adhered to each carbon nanostructure, and forming a carbon nanostructure layer by depositing the carbon nanostructures on a surface.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: September 15, 2015
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Han Liu, Tushar K. Shah, Jess Michael Goldfinger
  • Patent number: 9107292
    Abstract: Carbon nanostructures can convey enhanced electrical conductivity to various substrates, while maintaining a high surface area and low density per unit area. Such substrates can provide good shielding against electromagnetic radiation over a wide range of frequencies. Electrically conductive structures can include a support layer containing a plurality of fibers having apertures defined between the fibers, and a plurality of carbon nanostructures at least partially conformally coating the fibers and bridging across the apertures defined between adjacent fibers to form a continuous carbon nanostructure layer. Each carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 11, 2015
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Tushar K. Shah, Han Liu, Jess Michael Goldfinger, John J. Morber
  • Publication number: 20140151111
    Abstract: Carbon nanostructures can convey enhanced electrical conductivity to various substrates, while maintaining a high surface area and low density per unit area. Such substrates can provide good shielding against electromagnetic radiation over a wide range of frequencies. Electrically conductive structures can include a support layer containing a plurality of fibers having apertures defined between the fibers, and a plurality of carbon nanostructures at least partially conformally coating the fibers and bridging across the apertures defined between adjacent fibers to form a continuous carbon nanostructure layer. Each carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. Shah, Han Liu, Jess Michael Goldfinger, John J. Morber
  • Publication number: 20140099493
    Abstract: A carbon nanostructure that is free of a growth substrate adhered to the carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. Carbon nanostructures can be agglomerated with one another and densified to form a carbon nanostructure layer in which at least a portion of the carbon nanotubes in each carbon nanostructure are aligned substantially parallel to one another. Methods for forming a carbon nanostructure layer can include providing a plurality of carbon nanostructures that are free of a growth substrate adhered to each carbon nanostructure, and forming a carbon nanostructure layer by depositing the carbon nanostructures on a surface.
    Type: Application
    Filed: September 25, 2013
    Publication date: April 10, 2014
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Han LIU, Tushar K. Shah, Jess Michael Goldfinger
  • Publication number: 20140093728
    Abstract: A carbon nanostructure that is free of a growth substrate can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. The carbon nanostructure can be released from a growth substrate in the form of a flake material. Optionally, the carbon nanotubes of the carbon nanostructure can be coated, such as with a polymer, or a filler material can be present within the porosity of the carbon nanostructure. Methods for forming a carbon nanostructure that is free of a growth substrate can include providing a carbon nanostructure adhered to a growth substrate, and removing the carbon nanostructure from the growth substrate to form a carbon nanostructure that is free of the growth substrate. Various techniques can be used to affect removal of the carbon nanostructure from the growth substrate. Isolation of the carbon nanostructure can further employ various wet and/or dry separation techniques.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 3, 2014
    Applicant: Applied Nanostructured Solutions, LLC
    Inventors: Tushar K. SHAH, Harry Charles Malecki, Rajneeta Rachel Basantkumar, Han Liu, Corey Adam Fleischer, Joseph J. Sedlak, Jigar M. Patel, William Patrick Burgess, Jess Michael Goldfinger