Patents by Inventor Jess Shi

Jess Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220088392
    Abstract: A new architecture is disclosed for an IPG having a master and slave electrode driver integrated circuits (ICs). The electrode outputs on the ICs are wired together. Each IC can be programmed to provide pulses with different frequencies. Active timing channels in master and slave ICs are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other IC so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 11207521
    Abstract: A new architecture is disclosed for an IPG having a master and slave electrode driver integrated circuits (ICs). The electrode outputs on the ICs are wired together. Each IC can be programmed to provide pulses with different frequencies. Active timing channels in master and slave ICs are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other IC so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: December 28, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Publication number: 20190299007
    Abstract: A new architecture is disclosed for an IPG having a master and slave electrode driver integrated circuits (ICs). The electrode outputs on the ICs are wired together. Each IC can be programmed to provide pulses with different frequencies. Active timing channels in master and slave ICs are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other IC so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 10363422
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 30, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 10363423
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: July 30, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Jess Shi
  • Patent number: 9867995
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: January 16, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Publication number: 20170333719
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Inventors: Goran N. Marnfeldt, Jess Shi
  • Patent number: 9757565
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: September 12, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Jess Shi
  • Publication number: 20170216600
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 3, 2017
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 9656081
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: May 23, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Publication number: 20160279427
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Publication number: 20160184591
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Publication number: 20160184592
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Inventors: Goran N. Marnfeldt, Jess Shi
  • Patent number: 9358399
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 7, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9339659
    Abstract: An external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest (hot) and lowest (cold) coupling to the external charger. The intensity of the magnetic charging field is optimized for the cold implant to ensure that it is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant to ensure that it does not exceed a power dissipation limit. As a result, charging is optimized to be fast for all of the implants, while still safe from a tissue heating perspective.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9314632
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: April 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran Marnfeldt, Jess Shi
  • Publication number: 20140277287
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Publication number: 20140200631
    Abstract: An external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest (hot) and lowest (cold) coupling to the external charger. The intensity of the magnetic charging field is optimized for the cold implant to ensure that it is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant to ensure that it does not exceed a power dissipation limit. As a result, charging is optimized to be fast for all of the implants, while still safe from a tissue heating perspective.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 8744592
    Abstract: An improved external charger for a battery in an implantable medical device (implant), and technique for charging the battery using such improved external charger, is disclosed. In one example, simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit is chosen to constrain the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles are determined for the various levels of input intensities to ensure that the power limit is not exceeded. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current, for example, the voltage across the battery charging circuitry, is determined and stored in the external charger.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: June 3, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 8676318
    Abstract: An improved external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest and lowest coupling to the external charger, and so designates those implants as “hot” and “cold.” The intensity of the magnetic charging field is optimized for the cold implant consistent with the simulation to ensure that that the cold implant is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant consistent with the simulation to ensure that the hot implant does not exceed the power dissipation limit.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: March 18, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman