Patents by Inventor Jess W. Shi

Jess W. Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9962551
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 8, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 9795793
    Abstract: Architectures for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. A parallel bus operating in accordance with a communication protocol couples the ICs, and certain functional blocks not needed in the slave are disabled. Stimulation parameters are loaded via the bus into each IC, and a stimulation enable command is issued on the bus to ensure simultaneous stimulation from the electrodes on both ICs. Clocking strategies are also disclosed to allow clocking of the master and slave ICs to be independently controlled, and to ensure that relevant internal and bus clocks used in the system are synchronized.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: October 24, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Emanuel Feldman, Paul J. Griffith, Jess W. Shi
  • Patent number: 9782588
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 10, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Publication number: 20170232265
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Application
    Filed: May 5, 2017
    Publication date: August 17, 2017
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Publication number: 20170143970
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Patent number: 9643016
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: May 9, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 9561365
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 7, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Publication number: 20160220830
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 4, 2016
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 9314638
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: April 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Publication number: 20160082260
    Abstract: An improved architecture for an implantable medical device such as an implantable pulse generator (IPG) is disclosed. In one embodiment, the various functional blocks for the IPG are incorporated into a signal integrated circuit (IC). Each of the functional blocks communicates with each other, and with other off-chip devices if necessary, via a centralized bus governed by a communication protocol. To communicate with the bus and to adhere to the protocol, each circuit block includes bus interface circuitry adherent with that protocol. Because each block complies with the protocol, any given block can easily be modified or upgraded without affecting the design of the other blocks, facilitating debugging and upgrading of the IPG circuitry. Moreover, because the centralized bus can be taken off the integrated circuit, extra circuitry can easily be added off chip to modify or add functionality to the IPG.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Paul J. Griffith, Jordi Parramon, Goran Marnfeldt, Daniel Aghassian, Kiran Nimmagadda, Emanuel Feldman, Jess W. Shi
  • Publication number: 20150335901
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Application
    Filed: August 4, 2015
    Publication date: November 26, 2015
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Publication number: 20150290456
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 15, 2015
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Patent number: 9095726
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 4, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 9061140
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 23, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Patent number: 9061152
    Abstract: Disclosed herein are methods and circuitry for monitoring and adjusting a compliance voltage in an implantable stimulator devices to an optimal value that is sufficiently high to allow for proper circuit performance (i.e., sufficient current output), but low enough that power is not needlessly wasted via excessive voltage drops across the current output circuitry. The algorithm measures output voltages across the current source and sink circuitry during at least periods of actual stimulation when both the current sources and sinks are operable, and adjusts the compliance voltage so as to reduce these output voltages to within guard band values preferably indicative for operation in transistor saturation. The output voltages can additionally be monitored during periods between stimulation pulses to improve the accuracy of the measurement, and is further beneficial in that such additional measurements are not perceptible to the patient.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: June 23, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Yuping He, Que T. Doan, David K. L. Peterson
  • Publication number: 20140324131
    Abstract: Disclosed herein are methods and circuitry for monitoring and adjusting a compliance voltage in an implantable stimulator devices to an optimal value that is sufficiently high to allow for proper circuit performance (i.e., sufficient current output), but low enough that power is not needlessly wasted via excessive voltage drops across the current output circuitry. The algorithm measures output voltages across the current source and sink circuitry during at least periods of actual stimulation when both the current sources and sinks are operable, and adjusts the compliance voltage so as to reduce these output voltages to within guard band values preferably indicative for operation in transistor saturation. The output voltages can additionally be monitored during periods between stimulation pulses to improve the accuracy of the measurement, and is further beneficial in that such additional measurements are not perceptible to the patient.
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Inventors: Jess W. Shi, Yuping He, Que T. Doan, David K.L. Peterson
  • Publication number: 20140277290
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 8781598
    Abstract: Disclosed herein are methods and circuitry for monitoring and adjusting a compliance voltage in an implantable stimulator devices to an optimal value that is sufficiently high to allow for proper circuit performance (i.e., sufficient current output), but low enough that power is not needlessly wasted via excessive voltage drops across the current output circuitry. The algorithm measures output voltages across the current source and sink circuitry during at least periods of actual stimulation when both the current sources and sinks are operable, and adjusts the compliance voltage so as to reduce these output voltages to within guard band values preferably indicative for operation in transistor saturation. The output voltages can additionally be monitored during periods between stimulation pulses to improve the accuracy of the measurement, and is further beneficial in that such additional measurements are not perceptible to the patient.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: July 15, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Yuping He, Que T. Doan, David K. L. Peterson
  • Patent number: 8768453
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 1, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 8649858
    Abstract: An improved architecture for an implantable medical device such as an implantable pulse generator (IPG) is disclosed. In one embodiment, the various functional blocks for the IPG are incorporated into a signal integrated circuit (IC). Each of the functional blocks communicate with each other, and with other off-chip devices if necessary, via a centralized bus governed by a communication protocol. To communicate with the bus and to adhere to the protocol, each circuit block includes bus interface circuitry adherent with that protocol. Because each block complies with the protocol, any given block can easily be modified or upgraded without affecting the design of the other blocks, facilitating debugging and upgrading of the IPG circuitry. Moreover, because the centralized bus can be taken off the integrated circuit, extra circuitry can easily be added off chip to modify or add functionality to the IPG without the need for a major redesign of the main IPG IC.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: February 11, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Paul J. Griffith, Jordi Parramon, Goran N. Marnfeldt, Daniel Aghassian, Kiran Nimmagadda, Emanuel Feldman, Jess W. Shi