Patents by Inventor Jesse Chen
Jesse Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12367718Abstract: An improved system and method of selectively transmitting asset data from one or more sensors associated with the vehicle to a backend server, which is configured to analyze the asset data and, if necessary for further analysis of the asset data (e.g., to determine whether a safety event has occurred) and/or to provide actionable data for review by a safety analyst, requests further asset data from a vehicle device.Type: GrantFiled: April 29, 2024Date of Patent: July 22, 2025Assignee: Samsara, Inc.Inventors: Mathew Chasan Calmer, Jesse Chen, Saumya Jain, Kavya Joshi, Justin Pan, Ryan Milligan, Justin Delegard, Jason Symons
-
Publication number: 20250134425Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.Type: ApplicationFiled: December 19, 2024Publication date: May 1, 2025Inventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
-
Publication number: 20250127435Abstract: A blood glucose sensing system includes a plurality of physiological sensors. The system can estimate blood glucose based on discrete invasive blood glucose estimates from a blood sample, discrete noninvasive blood glucose estimates derived from optical sensors, and continuously-calculated blood glucose estimates derived from a nonlinear state-space model of glucose and insulin reactions within a human body. The state-space model has user-entered values corresponding to their insulin and meal intake. The user's blood glucose is estimated from a combination of the discrete invasive blood glucose estimates, the discrete noninvasive blood glucose estimates and the continuously-calculated blood glucose estimate.Type: ApplicationFiled: November 20, 2024Publication date: April 24, 2025Inventors: Kevin Hughes Pauley, Hoi Wong, Jesse Chen, Mathew Paul
-
Publication number: 20250118415Abstract: A system can process an indication of user data, wherein the user data comprises a food item including at least one recipe having one or more ingredients, and a query, wherein the query is associated with at least one ingredient, and generate, based at least in part on the query, nutrition data associated with the at least one ingredient, wherein the nutrition data comprises preparation data, sourcing data, delivery data, and a list of nutrients for the at least one ingredient. The system can further estimate, based at least in part on the nutrition data associated with the least one ingredient, a nutritional score, then compare the estimated nutritional score to a threshold, and based on the compared nutritional score, generate one or more instructions to cause an indication of the nutritional score on a user device.Type: ApplicationFiled: October 4, 2024Publication date: April 10, 2025Inventors: Gregory A. Olsen, Shadae Zamyad, Quan Tran, Jesse Chen, Gerry Hammarth
-
Publication number: 20250090057Abstract: An optical physiological sensor configured to perform high speed spectral sweep analysis of sample tissue being measured to non-invasively predict an analyte level of a patient. An emitter of the optical physiological sensor can be regulated to operate at different temperatures to emit radiation at different wavelengths. Variation in emitter drive current, duty cycle, and forward voltage can also be used to cause the emitter to emit a range of wavelengths. Informative spectral data can be obtained during the sweeping of specific wavelength regions of sample tissue.Type: ApplicationFiled: October 16, 2024Publication date: March 20, 2025Inventors: Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Jeroen Poeze, Jesse Chen, Kevin Hughes Pauley, Mathew Paul, Sean Merritt, Thomas B. Blank, Massi Joe E. Kiani
-
Publication number: 20250032711Abstract: A system which provides closed loop insulin administration is disclosed. The system includes redundant glucose sensors which may be interleaved in order to provide monitoring when one of the glucose sensors is in a settling period. The system may include a disease management unit which includes both a glucose sensor and an insulin pump. A closed loop disease management system which bases insulin administration on accurate glucose measurements may improve a patient's quality of life.Type: ApplicationFiled: July 31, 2024Publication date: January 30, 2025Inventors: Massi Joe E. Kiani, Venkatramanan Krishnamani, Hung The Vo, Sai Kong Frank Lee, Kevin Hughes Pauley, Cristiano Dalvi, Jeroen Poeze, Jesse Chen, Gregory A. Olsen, Derek Treese
-
Patent number: 12200589Abstract: An example method includes receiving, by a first application executing on a primary device and from a second application executing on the primary device, an indication of data to be transferred, wherein the primary device and the vehicle head unit are communicatively coupled via a wireless network connection operating in accordance with a wireless networking protocol; determining, by the first application and based on the indication of the data, an amount of data to be transferred; determining, by the first application, whether the amount of data satisfies a maximum packet size for the wireless networking protocol; responsive to determining that the amount of data does not satisfy the maximum packet size: segmenting the data into a plurality of packets, wherein each packet from the plurality of packets includes an amount of data that satisfies the maximum packet size; and sending the plurality of packets using the wireless network connection.Type: GrantFiled: September 9, 2022Date of Patent: January 14, 2025Assignee: Google LLCInventors: Jennifer Yee Tsau, Ramasadagopan Periathiruvadi, Anthony Jesse Chen, Daniel Harms, Yuxing Yao, Wenting Zhai, Yiran Yan, Thomas Anthony Pelaia, II
-
Patent number: 12193813Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.Type: GrantFiled: October 27, 2023Date of Patent: January 14, 2025Assignee: Masimo CorporationInventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
-
Patent number: 12178572Abstract: A blood glucose sensing system includes a plurality of physiological sensors. The system can estimate blood glucose based on discrete invasive blood glucose estimates from a blood sample, discrete noninvasive blood glucose estimates derived from optical sensors, and continuously-calculated blood glucose estimates derived from a nonlinear state-space model of glucose and insulin reactions within a human body. The state-space model has user-entered values corresponding to their insulin and meal intake. The user's blood glucose is estimated from a combination of the discrete invasive blood glucose estimates, the discrete noninvasive blood glucose estimates and the continuously-calculated blood glucose estimate.Type: GrantFiled: January 31, 2024Date of Patent: December 31, 2024Assignee: Masimo CorporationInventors: Kevin Hughes Pauley, Hoi Wong, Jesse Chen, Mathew Paul
-
Publication number: 20240420590Abstract: Systems and methods for a comprehensive and personalized approach to health and lifestyle coaching are described. The system may determine health metrics of a user based on detected physiological parameters. The health metrics may be used to determine health recommendations and transmit feedback to the user based on user compliance with the recommendations.Type: ApplicationFiled: June 26, 2024Publication date: December 19, 2024Inventors: Kevin Hughes Pauley, Merlin Stonecypher, Anderson Briglia, Gerry Hammarth, Gregory A. Olsen, Jesse Chen
-
Publication number: 20240407677Abstract: A noninvasive physiological sensor can include a first body portion and a second body portion coupled to each other and configured to at least partially enclose a user's finger. The sensor can further include a first probe coupled to one or more emitters and a second probe coupled to a detector. The first probe can direct light emitted from the one or more emitters toward tissue of the user's finger and the second probe can direct light attenuated through the tissue to the detector. The first and second probes can be coupled to the first and second body portions such that when the first and second body portions are rotated with respect to one another, ends of the first and second probes can be moved in a direction towards one another to compress the tissue of the user's finger.Type: ApplicationFiled: June 18, 2024Publication date: December 12, 2024Inventors: Hung The Vo, Kevin Hughes Pauley, Cristiano Dalvi, Sean Merritt, Jesse Chen, Jeroen Poeze, Ferdyan Lesmana, Ruiqi Long
-
Patent number: 12150760Abstract: An optical physiological sensor configured to perform high speed spectral sweep analysis of sample tissue being measured to non-invasively predict an analyte level of a patient. An emitter of the optical physiological sensor can be regulated to operate at different temperatures to emit radiation at different wavelengths. Variation in emitter drive current, duty cycle, and forward voltage can also be used to cause the emitter to emit a range of wavelengths. Informative spectral data can be obtained during the sweeping of specific wavelength regions of sample tissue.Type: GrantFiled: December 14, 2022Date of Patent: November 26, 2024Assignee: Willow Laboratories, Inc.Inventors: Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Jeroen Poeze, Jesse Chen, Kevin Hughes Pauley, Mathew Paul, Sean Merritt, Thomas B. Blank, Massi Joe E. Kiani
-
Patent number: 12128213Abstract: A system which provides closed loop insulin administration is disclosed. The system includes redundant glucose sensors which may be interleaved in order to provide monitoring when one of the glucose sensors is in a settling period. The system may include a disease management unit which includes both a glucose sensor and an insulin pump. A closed loop disease management system which bases insulin administration on accurate glucose measurements may improve a patient's quality of life.Type: GrantFiled: January 28, 2021Date of Patent: October 29, 2024Assignee: Willow Laboratories, Inc.Inventors: Massi Joe E. Kiani, Venkatramanan Krishnamani, Hung The Vo, Sai Kong Frank Lee, Kevin Hughes Pauley, Cristiano Dalvi, Jeroen Poeze, Jesse Chen, Gregory A. Olsen, Derek Treese
-
Patent number: 12131661Abstract: Systems and methods for a comprehensive and personalized approach to health and lifestyle coaching are described. The system may determine health metrics of a user based on detected physiological parameters. The health metrics may be used to determine health recommendations and transmit feedback to the user based on user compliance with the recommendations.Type: GrantFiled: October 2, 2020Date of Patent: October 29, 2024Assignee: Willow Laboratories, Inc.Inventors: Kevin Hughes Pauley, Merlin Stonecypher, Anderson Briglia, Gerry Hammarth, Gregory A. Olsen, Jesse Chen
-
Publication number: 20240324910Abstract: Systems, methods, apparatuses, and medical devices for harmonizing data from a plurality of non-invasive sensors are described. A physiological parameter can be determined by harmonizing data between two or more different types of non-invasive physiological sensors interrogating the same or proximate measurement sites. Data from one or more first non-invasive sensors can be utilized to identify one or more variables that are useful in one or more calculations associated with data from one or more second non-invasive sensors. Data from one or more first non-invasive sensors can be utilized to calibrate one or more second non-invasive sensors. Non-invasive sensors can include, but are not limited to, an optical coherence tomography (OCT) sensor, a bio-impedance sensor, a tissue dielectric constant sensor, a plethysmograph sensor, or a Raman spectrometer.Type: ApplicationFiled: April 23, 2024Publication date: October 3, 2024Inventors: Jesse Chen, Sean Merritt, Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Kevin Hughes Pauley, Jeroen Poeze, Ruiqi Long, Stephen L. Monfre
-
Patent number: 12106613Abstract: An improved system and method of selectively transmitting asset data from one or more sensors associated with the vehicle to a backend server, which is configured to analyze the asset data and, if necessary for further analysis of the asset data (e.g., to determine whether a safety event has occurred) and/or to provide actionable data for review by a safety analyst, requests further asset data from a vehicle device.Type: GrantFiled: May 24, 2023Date of Patent: October 1, 2024Assignee: Samsara Inc.Inventors: Mathew Chasan Calmer, Jesse Chen, Saumya Jain, Kavya Joshi, Justin Pan, Ryan Milligan, Justin Delegard, Jason Symons
-
Publication number: 20240293049Abstract: Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from the same tissue site. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus. The multi-sensor apparatus can orient the plurality of non-invasive, physiological sensors such that each of the plurality of non-invasive, physiological sensors obtains physiological data from the same or a similar location.Type: ApplicationFiled: March 19, 2024Publication date: September 5, 2024Inventors: Cristiano Dalvi, Hung The Vo, Jeroen Poeze, Ferdyan Lesmana, Jesse Chen, Kevin Hughes Pauley, Ruiqi Long, Stephen Leonard Monfre, Sean Merritt, Mohamed K. Diab, Massi Joe E. Kiani
-
Patent number: 12064240Abstract: A noninvasive physiological sensor can include a first body portion and a second body portion coupled to each other and configured to at least partially enclose a user's finger. The sensor can further include a first probe coupled to one or more emitters and a second probe coupled to a detector. The first probe can direct light emitted from the one or more emitters toward tissue of the user's finger and the second probe can direct light attenuated through the tissue to the detector. The first and second probes can be coupled to the first and second body portions such that when the first and second body portions are rotated with respect to one another, ends of the first and second probes can be moved in a direction towards one another to compress the tissue of the user's finger.Type: GrantFiled: January 23, 2023Date of Patent: August 20, 2024Assignee: Willow Laboratories, Inc.Inventors: Hung The Vo, Kevin Hughes Pauley, Cristiano Dalvi, Sean Merritt, Jesse Chen, Jeroen Poeze, Ferdyan Lesmana, Ruiqi Long
-
Publication number: 20240180451Abstract: Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from essentially the same, overlapping, or proximate regions of tissue of a patient are disclosed. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus and can be oriented such that each sensor is directed towards, or can obtain a measurement from, the same or a similar location.Type: ApplicationFiled: October 25, 2023Publication date: June 6, 2024Inventors: Mohamed K. Diab, Kevin Hughes Pauley, Jesse Chen, Cristiano Dalvi, Hung The Vo, Ferdyan Lesmana, Jeroen Poeze, Ruiqi Long, Venkatramanan Krishnamani, Frank Lee
-
Patent number: 11992311Abstract: Systems, methods, apparatuses, and medical devices for harmonizing data from a plurality of non-invasive sensors are described. A physiological parameter can be determined by harmonizing data between two or more different types of non-invasive physiological sensors interrogating the same or proximate measurement sites. Data from one or more first non-invasive sensors can be utilized to identify one or more variables that are useful in one or more calculations associated with data from one or more second non-invasive sensors. Data from one or more first non-invasive sensors can be utilized to calibrate one or more second non-invasive sensors. Non-invasive sensors can include, but are not limited to, an optical coherence tomography (OCT) sensor, a bio-impedance sensor, a tissue dielectric constant sensor, a plethysmograph sensor, or a Raman spectrometer.Type: GrantFiled: May 19, 2021Date of Patent: May 28, 2024Assignee: Willow Laboratories, Inc.Inventors: Jesse Chen, Sean Merritt, Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Kevin Hughes Pauley, Jeroen Poeze, Ruiqi Long, Stephen L Monfre