Patents by Inventor Jesse Chen
Jesse Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220202233Abstract: A food dispensing device or system which dispenses food extracted from pre-packaged food containers is described. One or more food extraction mechanisms retrieve food from storage containers. The food can be packaged and dispensed to a user for subsequent preparation.Type: ApplicationFiled: October 8, 2021Publication date: June 30, 2022Inventors: Jesse Austin Rosalia, Haidee Chen
-
Publication number: 20220201449Abstract: An example method includes receiving, by a first application executing on a primary device and from a second application executing on the primary device, an indication of data to be transferred, wherein the primary device and the vehicle head unit are communicatively coupled via a wireless network connection operating in accordance with a wireless networking protocol; determining, by the first application and based on the indication of the data, an amount of data to be transferred; determining, by the first application, whether the amount of data satisfies a maximum packet size for the wireless networking protocol; responsive to determining that the amount of data does not satisfy the maximum packet size: segmenting the data into a plurality of packets, wherein each packet from the plurality of packets includes an amount of data that satisfies the maximum packet size; and sending the plurality of packets using the wireless network connection.Type: ApplicationFiled: December 22, 2020Publication date: June 23, 2022Inventors: Jennifer Yee Tsau, Ramasadagopan Periathiruvadi, Anthony Jesse Chen, Daniel Harms, Yuxing Yao, Wenting Zhai, Yiran Yan, Thomas Anthony Pelaia, II
-
Patent number: 11341786Abstract: An improved system and method of selectively transmitting asset data from one or more sensors associated with the vehicle to a backend server, which is configured to analyze the asset data and, if necessary for further analysis of the asset data (e.g., to determine whether a safety event has occurred) and/or to provide actionable data for review by a safety analyst, requests further asset data from a vehicle device.Type: GrantFiled: June 14, 2021Date of Patent: May 24, 2022Assignee: SAMSARA INC.Inventors: Mathew Chasan Calmer, Jesse Chen, Saumya Jain, Kavya Joshi, Justin Pan, Ryan Milligan, Justin Delegard, Jason Symons
-
Publication number: 20220133189Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.Type: ApplicationFiled: January 14, 2022Publication date: May 5, 2022Inventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
-
Patent number: 11224363Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.Type: GrantFiled: February 28, 2020Date of Patent: January 18, 2022Assignee: MASIMO CORPORATIONInventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
-
Publication number: 20210386382Abstract: The disease management system can determine a measurement of one or more physiological parameters and can determine a disease event based on the one or more measurements. Furthermore, the disease management system can determine a pose of an individual using a pose sensor. Based on an identification of a disease event and a determination that the pose of the individual corresponds to a first pose, the disease management system can cause at least one of an audible, visual, or vibratory alarm. Based on an identification of a disease event and a determination that the pose of the individual does not correspond to the first pose, the disease management system can cause administration of a medication to the individual.Type: ApplicationFiled: June 10, 2021Publication date: December 16, 2021Inventors: Gregory A. Olsen, Sai Kong Frank Lee, Jesse Chen, Hung The Vo, Kevin Hughes Pauley
-
Publication number: 20210378562Abstract: Systems, methods, apparatuses, and medical devices for harmonizing data from a plurality of non-invasive sensors are described. A physiological parameter can be determined by harmonizing data between two or more different types of non-invasive physiological sensors interrogating the same or proximate measurement sites. Data from one or more first non-invasive sensors can be utilized to identify one or more variables that are useful in one or more calculations associated with data from one or more second non-invasive sensors. Data from one or more first non-invasive sensors can be utilized to calibrate one or more second non-invasive sensors. Non-invasive sensors can include, but are not limited to, an optical coherence tomography (OCT) sensor, a bio-impedance sensor, a tissue dielectric constant sensor, a plethysmograph sensor, or a Raman spectrometer.Type: ApplicationFiled: May 19, 2021Publication date: December 9, 2021Inventors: Jesse Chen, Sean Merritt, Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Kevin Hughes Pauley, Jeroen Poeze, Ruiqi Long, Stephen L. Monfre
-
Publication number: 20210236729Abstract: A system which provides closed loop insulin administration is disclosed. The system includes redundant glucose sensors which may be interleaved in order to provide monitoring when one of the glucose sensors is in a settling period. The system may include a disease management unit which includes both a glucose sensor and an insulin pump. A closed loop disease management system which bases insulin administration on accurate glucose measurements may improve a patient's quality of life.Type: ApplicationFiled: January 28, 2021Publication date: August 5, 2021Inventors: Massi Joe E. Kiani, Venkatramanan Krishnamani, Hung The Vo, Sai Kong Frank Lee, Kevin Hughes Pauley, Cristiano Dalvi, Jeroen Poeze, Jesse Chen, Gregory A. Olsen, Derek Treese
-
Patent number: 11026604Abstract: Systems, methods, apparatuses, and medical devices for harmonizing data from a plurality of non-invasive sensors are described. A physiological parameter can be determined by harmonizing data between two or more different types of non-invasive physiological sensors interrogating the same or proximate measurement sites. Data from one or more first non-invasive sensors can be utilized to identify one or more variables that are useful in one or more calculations associated with data from one or more second non-invasive sensors. Data from one or more first non-invasive sensors can be utilized to calibrate one or more second non-invasive sensors. Non-invasive sensors can include, but are not limited to, an optical coherence tomography (OCT) sensor, a bio-impedance sensor, a tissue dielectric constant sensor, a plethysmograph sensor, or a Raman spectrometer.Type: GrantFiled: July 13, 2018Date of Patent: June 8, 2021Assignee: Cercacor Laboratories, Inc.Inventors: Jesse Chen, Sean Merritt, Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Kevin Hughes Pauley, Jeroen Poeze, Ruiqi Long, Stephen L. Monfre
-
Publication number: 20210113121Abstract: Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from essentially the same, overlapping, or proximate regions of tissue of a patient are disclosed. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus and can be oriented such that each sensor is directed towards, or can obtain a measurement from, the same or a similar location.Type: ApplicationFiled: August 27, 2020Publication date: April 22, 2021Inventors: Mohamed K. Diab, Kevin Hughes Pauley, Jesse Chen, Cristiano Dalvi, Hung The Vo, Ferdyan Lesmana, Jeroen Poeze, Ruiqi Long, Venkatramanan Krishnamani, Frank Lee, Mathew Paul
-
Publication number: 20210085228Abstract: An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.Type: ApplicationFiled: August 5, 2020Publication date: March 25, 2021Inventors: Kevin Pauley, Cristiano Dalvi, Hung Vo, Jesse Chen, Ferdyan Lesmana, Jeroen Poeze, Sean Merritt
-
Publication number: 20200305777Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.Type: ApplicationFiled: February 28, 2020Publication date: October 1, 2020Inventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
-
Patent number: 10750984Abstract: An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.Type: GrantFiled: December 21, 2017Date of Patent: August 25, 2020Assignee: Cercacor Laboratories, Inc.Inventors: Kevin Pauley, Cristiano Dalvi, Hung Vo, Jesse Chen, Ferdyan Lesmana, Jeroen Poeze, Sean Merritt
-
Publication number: 20200196877Abstract: A noninvasive physiological sensor can include a first body portion and a second body portion coupled to each other and configured to at least partially enclose a user's finger. The sensor can further include a first probe coupled to one or more emitters and a second probe coupled to a detector. The first probe can direct light emitted from the one or more emitters toward tissue of the user's finger and the second probe can direct light attenuated through the tissue to the detector. The first and second probes can be coupled to the first and second body portions such that when the first and second body portions are rotated with respect to one another, ends of the first and second probes can be moved in a direction towards one another to compress the tissue of the user's finger.Type: ApplicationFiled: December 19, 2019Publication date: June 25, 2020Inventors: Hung The Vo, Kevin Hughes Pauley, Cristiano Dalvi, Sean Merritt, Jesse Chen, Jeroen Poeze, Ferdyan Lesmana, Ruiqi Long
-
Publication number: 20200163597Abstract: Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from the same tissue site. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus. The multi-sensor apparatus can orient the plurality of non-invasive, physiological sensors such that each of the plurality of non-invasive, physiological sensors obtains physiological data from the same or a similar location.Type: ApplicationFiled: November 27, 2019Publication date: May 28, 2020Inventors: Cristiano Dalvi, Hung The Vo, Jeroen Poeze, Ferdyan Lesmana, Jesse Chen, Kevin Hughes Pauley, Ruiqi Long, Stephen Leonard Monfre, Sean Merritt, Mohamed K. Diab, Massi Joe E. Kiani
-
Patent number: 10610139Abstract: An active-pulse blood analysis system has an optical sensor that illuminates a tissue site with multiple wavelengths of optical radiation and outputs sensor signals responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. A monitor communicates with the sensor signals and is responsive to arterial pulses within a first bandwidth and active pulses within a second bandwidth so as to generate arterial pulse ratios and active pulse ratios according to the wavelengths. An arterial calibration curve relates the arterial pulse ratios to a first arterial oxygen saturation value and an active pulse calibration curve relates the active pulse ratios to a second arterial oxygen saturation value. Decision logic outputs one of the first and second arterial oxygen saturation values based upon perfusion and signal quality.Type: GrantFiled: August 7, 2017Date of Patent: April 7, 2020Assignee: Masimo CorporationInventors: Massi Joe E. Kiani, Mathew Paul, Jesse Chen, Marcelo M. Lamego
-
Patent number: 10465190Abstract: The present disclosure provides, in some aspects, in vitro transcription systems (including, for example, nucleic acid constructs and polymerases), the use of which increases transcription efficiency while reducing the amount of truncated single-stranded ribonucleic acid transcript produced during an in vitro transcription reaction.Type: GrantFiled: December 21, 2016Date of Patent: November 5, 2019Assignee: ModernaTX, Inc.Inventors: Jesse Chen, Athanasios Dousis
-
Patent number: 10423292Abstract: In some implementations, vehicle data indicating a state of a vehicle is received. A current vehicle context is determined based on the vehicle data. Message data indicating one or more candidate messages is received, with each message having a corresponding display context. It is determined whether a particular message of the candidate messages has a display context that matches the current vehicle context. In response to determining that a particular message of the candidate messages has a display context that matches the current vehicle contexts, the particular message is provided for output on a display of the vehicle.Type: GrantFiled: September 22, 2016Date of Patent: September 24, 2019Assignee: Google LLCInventors: Victor Chan, Joseph Pieter Stefanus van Grieken, Anthony Jesse Chen
-
Publication number: 20180199871Abstract: An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.Type: ApplicationFiled: December 21, 2017Publication date: July 19, 2018Inventors: Kevin Pauley, Cristiano Dalvi, Hung Vo, Jesse Chen, Ferdyan Lesmana, Jeroen Poeze, Sean Merritt
-
Patent number: 9989560Abstract: A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and noninvasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.Type: GrantFiled: June 5, 2014Date of Patent: June 5, 2018Assignee: MASIMO CORPORATIONInventors: Jeroen Poeze, Jesse Chen, Mathew Paul, Marcelo Lamego, Massi Joe E. Kiani