Patents by Inventor Jesse Edwin Trout

Jesse Edwin Trout has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10788212
    Abstract: A system includes a turbine combustor. The turbine combustor has a combustor liner disposed about a combustion chamber, a flow sleeve, and a radial passageway. The flow sleeve disposed at an offset about the combustor liner to define a passage, wherein the passage is configured to direct an exhaust gas flow toward a head end of the turbine combustor. The radial passageway extends between the flow sleeve and the combustor liner, and the radial passageway is configured to isolate an oxidant flow through the radial passageway from the exhaust gas flow through the passage for a first operating condition and a second operating condition of the turbine combustor. The offset between the combustor liner and the flow sleeve at the first operating condition is greater than the offset between the combustor liner and the flow sleeve at the second operating condition.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: September 29, 2020
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Jonathan Kay Allen, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Bradford David Borchert, Michael V. Kazakis, Igor Petrovich Sidko
  • Patent number: 10316746
    Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber. The turbine combustor includes a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber. The turbine combustor also includes a third volume disposed axially downstream from the first volume and circumferentially about the second volume. The third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from the first volume and from the second volume.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: June 11, 2019
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Matthew Eugene Roberts, Leonid Yul'evich Ginesin
  • Patent number: 10253690
    Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber and a second volume configured to receive a first flow of an exhaust gas. The second volume is configured to direct a first portion of the first flow of the exhaust gas into the combustion chamber and to direct a second portion of the first flow of the exhaust gas into a third volume isolated from the first volume. The third volume is in fluid communication with an extraction conduit that is configured to direct the second portion of the first flow of the exhaust gas out of the turbine combustor.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 9, 2019
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Andrey Pavlovich Subbota
  • Patent number: 10094566
    Abstract: A system having a gas turbine engine is provided. The gas turbine engine includes a turbine and a combustor coupled to the turbine. The combustor includes a combustion chamber, one or more fuel nozzles upstream from the combustion chamber, and a head end having an end cover assembly. The end cover assembly includes an oxidant inlet configured to receive an oxidant flow, a central oxidant passage, and at least one fuel supply passage. The central oxidant passage is in fluid communication with the oxidant inlet, and the central oxidant passage is configured to route the oxidant flow to the one or more fuel nozzles. The at least one fuel supply passage is configured to receive a fuel flow and route the fuel flow into the one or more fuel nozzles.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: October 9, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Bradford David Borchert, Jesse Edwin Trout, Scott Robert Simmons, Almaz Valeev, Ilya Aleksandrovich Slobodyanskiy, Igor Petrovich Sidko, Leonid Yul'evich Ginesin
  • Publication number: 20160223202
    Abstract: A system having a gas turbine engine is provided. The gas turbine engine includes a turbine and a combustor coupled to the turbine. The combustor includes a combustion chamber, one or more fuel nozzles upstream from the combustion chamber, and a head end having an end cover assembly. The end cover assembly includes an oxidant inlet configured to receive an oxidant flow, a central oxidant passage, and at least one fuel supply passage. The central oxidant passage is in fluid communication with the oxidant inlet, and the central oxidant passage is configured to route the oxidant flow to the one or more fuel nozzles. The at least one fuel supply passage is configured to receive a fuel flow and route the fuel flow into the one or more fuel nozzles.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Bradford David Borchert, Jesse Edwin Trout, Scott Robert Simmons, Almaz Valeev, Ilya Aleksandrovich Slobodyanskiy, Igor Petrovich Sidko, Leonid Yul'evich Ginesin
  • Publication number: 20160222883
    Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber and a second volume configured to receive a first flow of an exhaust gas. The second volume is configured to direct a first portion of the first flow of the exhaust gas into the combustion chamber and to direct a second portion of the first flow of the exhaust gas into a third volume isolated from the first volume. The third volume is in fluid communication with an extraction conduit that is configured to direct the second portion of the first flow of the exhaust gas out of the turbine combustor.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Andrey Pavlovich Subbota
  • Publication number: 20160222884
    Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber. The turbine combustor includes a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber. The turbine combustor also includes a third volume disposed axially downstream from the first volume and circumferentially about the second volume. The third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from the first volume and from the second volume.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Matthew Eugene Roberts, Leonid Yulk'evich Ginesin
  • Publication number: 20160201916
    Abstract: A system includes a turbine combustor. The turbine combustor has a combustor liner disposed about a combustion chamber, a flow sleeve, and a radial passageway. The flow sleeve disposed at an offset about the combustor liner to define a passage, wherein the passage is configured to direct an exhaust gas flow toward a head end of the turbine combustor. The radial passageway extends between the flow sleeve and the combustor liner, and the radial passageway is configured to isolate an oxidant flow through the radial passageway from the exhaust gas flow through the passage for a first operating condition and a second operating condition of the turbine combustor. The offset between the combustor liner and the flow sleeve at the first operating condition is greater than the offset between the combustor liner and the flow sleeve at the second operating condition.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventors: Jonathan Kay Allen, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Bradford David Borchert, Michael V. Kazakis, Igor Petrovich Sidko
  • Patent number: 8397511
    Abstract: A system, in one embodiment, includes an engine wall. The engine wall includes a cold-side and a hot-side. The engine wall includes one or more dilution holes, wherein each of the one or more dilution holes includes a first opening on the cold-side, a second opening on a hot-side, and a section of thermal barrier coating (TBC) applied on the cold-side and having an opening that generally circumscribes the first opening.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventors: Wei Chen, Jesse Edwin Trout, Jeffrey Lebegue
  • Patent number: 8038382
    Abstract: Systems and methods for controlling the clearance in a gas turbine are provided. A temperature of a shaft of the gas turbine may be determined, and a desired temperature of an inner turbine shell of the turbine may be determined based upon the temperature of the shaft. The desired temperature of the inner turbine shell may be associated with a turbine clearance at which the gas turbine may be ignited. The temperature of the inner turbine shell may be altered by controlling the temperature of a gas that is circulated within the inner turbine shell, and a determination may be made that the temperature of the inner turbine shell exceeds the desired temperature. The gas turbine may be ignited subsequent to the determination that the temperature of the inner turbine shell exceeds the desired temperature.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: Tagir Nigmatulin, Jonathan Carl Thatcher, Jesse Edwin Trout, Roger Clayton Walker
  • Publication number: 20100293957
    Abstract: A system, in one embodiment, includes an engine wall. The engine wall includes a cold-side and a hot-side. The engine wall includes one or more dilution holes, wherein each of the one or more dilution holes includes a first opening on the cold-side, a second opening on a hot-side, and a section of thermal barrier coating (TBC) applied on the cold-side and having an opening that generally circumscribes the first opening.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 25, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Wei Chen, Jesse Edwin Trout, Jeffrey Lebegue
  • Publication number: 20100218506
    Abstract: Systems and methods for controlling the clearance in a gas turbine are provided. A temperature of a shaft of the gas turbine may be determined, and a desired temperature of an inner turbine shell of the turbine may be determined based upon the temperature of the shaft. The desired temperature of the inner turbine shell may be associated with a turbine clearance at which the gas turbine may be ignited. The temperature of the inner turbine shell may be altered by controlling the temperature of a gas that is circulated within the inner turbine shell, and a determination may be made that the temperature of the inner turbine shell exceeds the desired temperature. The gas turbine may be ignited subsequent to the determination that the temperature of the inner turbine shell exceeds the desired temperature.
    Type: Application
    Filed: May 7, 2010
    Publication date: September 2, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Tagir Nigmatulin, Jonathan Carl Thatcher, Jesse Edwin Trout, Roger Clayton Walker
  • Publication number: 20080069683
    Abstract: A method and system for controlling the clearance in a gas turbine. The current clearance between a turbine blade and a casing of the gas turbine is determined. Then, a determination is made as to whether the current clearance is within a predetermined clearance threshold and a control action is taken if the current clearance is outside of the predetermined clearance threshold.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 20, 2008
    Inventors: Tagir Nigmatulin, Janathan Carl Thatcher, Jesse Edwin Trout, Roger Clayton Walker