Patents by Inventor Jesse Edwin Trout
Jesse Edwin Trout has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10788212Abstract: A system includes a turbine combustor. The turbine combustor has a combustor liner disposed about a combustion chamber, a flow sleeve, and a radial passageway. The flow sleeve disposed at an offset about the combustor liner to define a passage, wherein the passage is configured to direct an exhaust gas flow toward a head end of the turbine combustor. The radial passageway extends between the flow sleeve and the combustor liner, and the radial passageway is configured to isolate an oxidant flow through the radial passageway from the exhaust gas flow through the passage for a first operating condition and a second operating condition of the turbine combustor. The offset between the combustor liner and the flow sleeve at the first operating condition is greater than the offset between the combustor liner and the flow sleeve at the second operating condition.Type: GrantFiled: January 11, 2016Date of Patent: September 29, 2020Assignees: General Electric Company, ExxonMobil Upstream Research CompanyInventors: Jonathan Kay Allen, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Bradford David Borchert, Michael V. Kazakis, Igor Petrovich Sidko
-
Patent number: 10316746Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber. The turbine combustor includes a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber. The turbine combustor also includes a third volume disposed axially downstream from the first volume and circumferentially about the second volume. The third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from the first volume and from the second volume.Type: GrantFiled: February 3, 2016Date of Patent: June 11, 2019Assignees: General Electric Company, ExxonMobil Upstream Research CompanyInventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Matthew Eugene Roberts, Leonid Yul'evich Ginesin
-
Patent number: 10253690Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber and a second volume configured to receive a first flow of an exhaust gas. The second volume is configured to direct a first portion of the first flow of the exhaust gas into the combustion chamber and to direct a second portion of the first flow of the exhaust gas into a third volume isolated from the first volume. The third volume is in fluid communication with an extraction conduit that is configured to direct the second portion of the first flow of the exhaust gas out of the turbine combustor.Type: GrantFiled: February 3, 2016Date of Patent: April 9, 2019Assignees: General Electric Company, ExxonMobil Upstream Research CompanyInventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Andrey Pavlovich Subbota
-
Patent number: 10094566Abstract: A system having a gas turbine engine is provided. The gas turbine engine includes a turbine and a combustor coupled to the turbine. The combustor includes a combustion chamber, one or more fuel nozzles upstream from the combustion chamber, and a head end having an end cover assembly. The end cover assembly includes an oxidant inlet configured to receive an oxidant flow, a central oxidant passage, and at least one fuel supply passage. The central oxidant passage is in fluid communication with the oxidant inlet, and the central oxidant passage is configured to route the oxidant flow to the one or more fuel nozzles. The at least one fuel supply passage is configured to receive a fuel flow and route the fuel flow into the one or more fuel nozzles.Type: GrantFiled: February 2, 2016Date of Patent: October 9, 2018Assignees: General Electric Company, ExxonMobil Upstream Research CompanyInventors: Bradford David Borchert, Jesse Edwin Trout, Scott Robert Simmons, Almaz Valeev, Ilya Aleksandrovich Slobodyanskiy, Igor Petrovich Sidko, Leonid Yul'evich Ginesin
-
Publication number: 20160222883Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber and a second volume configured to receive a first flow of an exhaust gas. The second volume is configured to direct a first portion of the first flow of the exhaust gas into the combustion chamber and to direct a second portion of the first flow of the exhaust gas into a third volume isolated from the first volume. The third volume is in fluid communication with an extraction conduit that is configured to direct the second portion of the first flow of the exhaust gas out of the turbine combustor.Type: ApplicationFiled: February 3, 2016Publication date: August 4, 2016Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Andrey Pavlovich Subbota
-
Publication number: 20160223202Abstract: A system having a gas turbine engine is provided. The gas turbine engine includes a turbine and a combustor coupled to the turbine. The combustor includes a combustion chamber, one or more fuel nozzles upstream from the combustion chamber, and a head end having an end cover assembly. The end cover assembly includes an oxidant inlet configured to receive an oxidant flow, a central oxidant passage, and at least one fuel supply passage. The central oxidant passage is in fluid communication with the oxidant inlet, and the central oxidant passage is configured to route the oxidant flow to the one or more fuel nozzles. The at least one fuel supply passage is configured to receive a fuel flow and route the fuel flow into the one or more fuel nozzles.Type: ApplicationFiled: February 2, 2016Publication date: August 4, 2016Inventors: Bradford David Borchert, Jesse Edwin Trout, Scott Robert Simmons, Almaz Valeev, Ilya Aleksandrovich Slobodyanskiy, Igor Petrovich Sidko, Leonid Yul'evich Ginesin
-
Publication number: 20160222884Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber. The turbine combustor includes a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber. The turbine combustor also includes a third volume disposed axially downstream from the first volume and circumferentially about the second volume. The third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from the first volume and from the second volume.Type: ApplicationFiled: February 3, 2016Publication date: August 4, 2016Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Matthew Eugene Roberts, Leonid Yulk'evich Ginesin
-
Publication number: 20160201916Abstract: A system includes a turbine combustor. The turbine combustor has a combustor liner disposed about a combustion chamber, a flow sleeve, and a radial passageway. The flow sleeve disposed at an offset about the combustor liner to define a passage, wherein the passage is configured to direct an exhaust gas flow toward a head end of the turbine combustor. The radial passageway extends between the flow sleeve and the combustor liner, and the radial passageway is configured to isolate an oxidant flow through the radial passageway from the exhaust gas flow through the passage for a first operating condition and a second operating condition of the turbine combustor. The offset between the combustor liner and the flow sleeve at the first operating condition is greater than the offset between the combustor liner and the flow sleeve at the second operating condition.Type: ApplicationFiled: January 11, 2016Publication date: July 14, 2016Inventors: Jonathan Kay Allen, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Bradford David Borchert, Michael V. Kazakis, Igor Petrovich Sidko
-
Patent number: 8397511Abstract: A system, in one embodiment, includes an engine wall. The engine wall includes a cold-side and a hot-side. The engine wall includes one or more dilution holes, wherein each of the one or more dilution holes includes a first opening on the cold-side, a second opening on a hot-side, and a section of thermal barrier coating (TBC) applied on the cold-side and having an opening that generally circumscribes the first opening.Type: GrantFiled: May 19, 2009Date of Patent: March 19, 2013Assignee: General Electric CompanyInventors: Wei Chen, Jesse Edwin Trout, Jeffrey Lebegue
-
Patent number: 8038382Abstract: Systems and methods for controlling the clearance in a gas turbine are provided. A temperature of a shaft of the gas turbine may be determined, and a desired temperature of an inner turbine shell of the turbine may be determined based upon the temperature of the shaft. The desired temperature of the inner turbine shell may be associated with a turbine clearance at which the gas turbine may be ignited. The temperature of the inner turbine shell may be altered by controlling the temperature of a gas that is circulated within the inner turbine shell, and a determination may be made that the temperature of the inner turbine shell exceeds the desired temperature. The gas turbine may be ignited subsequent to the determination that the temperature of the inner turbine shell exceeds the desired temperature.Type: GrantFiled: May 7, 2010Date of Patent: October 18, 2011Assignee: General Electric CompanyInventors: Tagir Nigmatulin, Jonathan Carl Thatcher, Jesse Edwin Trout, Roger Clayton Walker
-
Publication number: 20100293957Abstract: A system, in one embodiment, includes an engine wall. The engine wall includes a cold-side and a hot-side. The engine wall includes one or more dilution holes, wherein each of the one or more dilution holes includes a first opening on the cold-side, a second opening on a hot-side, and a section of thermal barrier coating (TBC) applied on the cold-side and having an opening that generally circumscribes the first opening.Type: ApplicationFiled: May 19, 2009Publication date: November 25, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Wei Chen, Jesse Edwin Trout, Jeffrey Lebegue
-
Publication number: 20100218506Abstract: Systems and methods for controlling the clearance in a gas turbine are provided. A temperature of a shaft of the gas turbine may be determined, and a desired temperature of an inner turbine shell of the turbine may be determined based upon the temperature of the shaft. The desired temperature of the inner turbine shell may be associated with a turbine clearance at which the gas turbine may be ignited. The temperature of the inner turbine shell may be altered by controlling the temperature of a gas that is circulated within the inner turbine shell, and a determination may be made that the temperature of the inner turbine shell exceeds the desired temperature. The gas turbine may be ignited subsequent to the determination that the temperature of the inner turbine shell exceeds the desired temperature.Type: ApplicationFiled: May 7, 2010Publication date: September 2, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Tagir Nigmatulin, Jonathan Carl Thatcher, Jesse Edwin Trout, Roger Clayton Walker
-
Publication number: 20080069683Abstract: A method and system for controlling the clearance in a gas turbine. The current clearance between a turbine blade and a casing of the gas turbine is determined. Then, a determination is made as to whether the current clearance is within a predetermined clearance threshold and a control action is taken if the current clearance is outside of the predetermined clearance threshold.Type: ApplicationFiled: September 15, 2006Publication date: March 20, 2008Inventors: Tagir Nigmatulin, Janathan Carl Thatcher, Jesse Edwin Trout, Roger Clayton Walker