Patents by Inventor Jesse M. Simon

Jesse M. Simon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200238078
    Abstract: A nerve cuff for establishing a nerve block on a nerve can have a cuff body with a channel for receiving a nerve, a reservoir for holding a drug, and an elongate opening slit extending the length of the cuff body that can be opened to provide access to the channel and can be closed to enclose the cuff body around the nerve. The nerve cuff can also include an electrode for detecting and measuring electrical signals generated by the nerve. A controller can be used to control delivery of the drug based on the electrical signals generated by the nerve.
    Type: Application
    Filed: February 7, 2020
    Publication date: July 30, 2020
    Inventors: Michael A. FALTYS, Jacob A. LEVINE, Jesse M. SIMON
  • Publication number: 20200206515
    Abstract: Leadless, implantable microstimulators for treating chronic inflammation. These devices can include a static magnetic field detector (e.g., non-Hall effect sensors/detectors, including those based on a Wiegand effect or generating pulses at a predetermined frequency range and using a detection circuit to determine the decay rate of the pulses), to trigger an emergency shut off of the micro stimulator. Also described are methods and apparatuses for regulating the temperature of an implant based applied power from a charger (e.g., voltage across the charger when unloaded and when loaded by the implant) to yield a power control loop correlated with the power drawn by the implant to determine temperature of the implant. A negotiation protocol can exchange data between the charger and the implant (e.g., type of charger, type of implant, nature of the coupling between the two, etc.) to set target power control loop parameters to estimate and regulate implant temperature.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Michael A. FALTYS, Jesse M. SIMON
  • Patent number: 10695569
    Abstract: Methods and apparatuses for stimulation of the vagus nerve to treat inflammation including adjusting the stimulation based on one or more metric sensitive to patient response. The one or more metrics may include heart rate variability, level of T regulatory cells, particularly memory T regulatory cells, temperature, etc. Stimulation may be provided through an implantable microstimulator.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 30, 2020
    Assignee: SetPoint Medical Corporation
    Inventors: Jacob A. Levine, Michael A. Faltys, Jesse M. Simon
  • Patent number: 10596367
    Abstract: A nerve cuff for establishing a nerve block on a nerve can have a cuff body with a channel for receiving a nerve, a reservoir for holding a drug, and an elongate opening slit extending the length of the cuff body that can be opened to provide access to the channel and can be closed to enclose the cuff body around the nerve. The nerve cuff can also include an electrode for detecting and measuring electrical signals generated by the nerve. A controller can be used to control delivery of the drug based on the electrical signals generated by the nerve.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 24, 2020
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jacob A. Levine, Jesse M. Simon
  • Patent number: 10583304
    Abstract: Leadless, implantable microstimulators for treating chronic inflammation. These devices can include a static magnetic field detector (e.g., non-Hall effect sensors/detectors, including those based on a Wiegand effect or generating pulses at a predetermined frequency range and using a detection circuit to determine the decay rate of the pulses), to trigger an emergency shut off of the microstimulator. Also described are methods and apparatuses for regulating the temperature of an implant based applied power from a charger (e.g., voltage across the charger when unloaded and when loaded by the implant) to yield a power control loop correlated with the power drawn by the implant to determine temperature of the implant. A negotiation protocol can exchange data between the charger and the implant (e.g., type of charger, type of implant, nature of the coupling between the two, etc.) to set target power control loop parameters to estimate and regulate implant temperature.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: March 10, 2020
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon
  • Patent number: 10532215
    Abstract: Leadless, implantable microstimulators for treating chronic inflammation. These devices can include a static magnetic field detector (e.g., non-Hall effect sensors/detectors, including those based on a Wiegand effect or generating pulses at a predetermined frequency range and using a detection circuit to determine the decay rate of the pulses), to trigger an emergency shut off of the microstimulator. Also described are methods and apparatuses for regulating the temperature of an implant based applied power from a charger (e.g., voltage across the charger when unloaded and when loaded by the implant) to yield a power control loop correlated with the power drawn by the implant to determine temperature of the implant. A negotiation protocol can exchange data between the charger and the implant (e.g., type of charger, type of implant, nature of the coupling between the two, etc.) to set target power control loop parameters to estimate and regulate implant temperature.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: January 14, 2020
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon
  • Publication number: 20190275328
    Abstract: Methods and apparatuses (e.g., devices and systems) for vagus nerve stimulation, including (but not limited to) sub-diaphragmatic vagus nerve stimulation. In particular, the methods and apparatuses described herein may be used to stimulate the posterior sub-diaphragmatic vagus nerve to treat inflammation and/or inflammatory disorders. The implantable microstimulators described herein may be leadless and batteryless.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 12, 2019
    Inventors: Ralph J. ZITNIK, Michael A. FALTYS, Jacob A. LEVINE, Jesse M. SIMON
  • Patent number: 10384068
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: August 20, 2019
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon, Yiming Liu
  • Patent number: 10314501
    Abstract: Methods and apparatuses (e.g., devices and systems) for vagus nerve stimulation, including (but not limited to) sub-diaphragmatic vagus nerve stimulation. In particular, the methods and apparatuses described herein may be used to stimulate the posterior sub-diaphragmatic vagus nerve to treat inflammation and/or inflammatory disorders. The implantable microstimulators described herein may be inductively charged and/or communicated with using the external charger. The implant may include a receiving antenna wrapped around the battery and/or the housing of the microstimulator/microregulator and/or may include a high magnetic permeability material in order to serve as a magnetic core for the antenna coil. Wearable inductive chargers/communication devices for inductively communicating with (including charging) an implanted microstimulator are described herein, which may include magnetically conductive material to enhance communication with an implant, including sub-diaphragmatic implants.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 11, 2019
    Assignee: SetPoint Medical Corporation
    Inventors: Ralph J. Zitnik, Michael A. Faltys, Jacob A. Levine, Jesse M. Simon
  • Publication number: 20180289970
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Michael A. FALTYS, Jesse M. SIMON, Yiming LIU
  • Patent number: 9993651
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 12, 2018
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon, Yiming Liu
  • Publication number: 20170209705
    Abstract: Leadless, implantable microstimulators for treating chronic inflammation. These devices can include a static magnetic field detector (e.g., non-Hall effect sensors/detectors, including those based on a Wiegand effect or generating pulses at a predetermined frequency range and using a detection circuit to determine the decay rate of the pulses), to trigger an emergency shut off of the microstimulator. Also described are methods and apparatuses for regulating the temperature of an implant based applied power from a charger (e.g., voltage across the charger when unloaded and when loaded by the implant) to yield a power control loop correlated with the power drawn by the implant to determine temperature of the implant. A negotiation protocol can exchange data between the charger and the implant (e.g., type of charger, type of implant, nature of the coupling between the two, etc.) to set target power control loop parameters to estimate and regulate implant temperature.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 27, 2017
    Inventors: Michael A. FALTYS, Jesse M. SIMON
  • Publication number: 20170202467
    Abstract: Methods and apparatuses (e.g., devices and systems) for vagus nerve stimulation, including (but not limited to) sub-diaphragmatic vagus nerve stimulation. In particular, the methods and apparatuses described herein may be used to stimulate the posterior sub-diaphragmatic vagus nerve to treat inflammation and/or inflammatory disorders. The implantable microstimulators described herein may be inductively charged and/or communicated with using the external charger. The implant may include a receiving antenna wrapped around the battery and/or the housing of the microstimulator/microregulator and/or may include a high magnetic permeability material in order to serve as a magnetic core for the antenna coil. Wearable inductive chargers/communication devices for inductively communicating with (including charging) an implanted microstimulator are described herein, which may include magnetically conductive material to enhance communication with an implant, including sub-diaphragmatic implants.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 20, 2017
    Inventors: Ralph J. ZITNIK, Michael A. FALTYS, Jacob A. LEVINE, Jesse M. SIMON
  • Publication number: 20170203103
    Abstract: Methods and apparatuses for stimulation of the vagus nerve to treat inflammation including adjusting the stimulation based on one or more metric sensitive to patient response. The one or more metrics may include heart rate variability, level of T regulatory cells, particularly memory T regulatory cells, temperature, etc. Stimulation may be provided through an implantable microstimulator.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 20, 2017
    Inventors: Jacob A. LEVINE, Michael A. FALTYS, Jesse M. SIMON
  • Publication number: 20170197076
    Abstract: A nerve cuff for establishing a nerve block on a nerve can have a cuff body with a channel for receiving a nerve, a reservoir for holding a drug, and an elongate opening slit extending the length of the cuff body that can be opened to provide access to the channel and can be closed to enclose the cuff body around the nerve. The nerve cuff can also include an electrode for detecting and measuring electrical signals generated by the nerve. A controller can be used to control delivery of the drug based on the electrical signals generated by the nerve.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 13, 2017
    Inventors: Michael A. FALTYS, Jacob A. LEVINE, Jesse M. SIMON
  • Publication number: 20160331952
    Abstract: An external programmer, such as an external clock synchronization tool, can be used to update or modify the stimulation protocol and/or parameters on an implanted electrical stimulator. In particular, described herein are external clock synchronization tools that can be used to calibrate a low-power clock of the implanted electrical stimulator. These tools may also be used to provide command overrides, including suspending or delaying neurostimulation, stopping neurostimulation, and/or on-demand neurostimulation.
    Type: Application
    Filed: May 12, 2016
    Publication date: November 17, 2016
    Inventors: Michael A. FALTYS, Jacob A. LEVINE, Jesse M. SIMON, Anthony ARNOLD
  • Publication number: 20160038745
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Inventors: Michael A. FALTYS, Jesse M. SIMON, Yiming LIU
  • Patent number: 9162064
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 20, 2015
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon, Yiming Liu
  • Publication number: 20150057722
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Application
    Filed: October 7, 2014
    Publication date: February 26, 2015
    Inventors: Michael A. FALTYS, Jesse M. SIMON, Yiming LIU
  • Patent number: 8855767
    Abstract: A system for treating chronic inflammation may include an implantable microstimulator, a wearable charger, and optionally an external controller. The implantable microstimulator may be implemented as a leadless neurostimulator implantable in communication with a cervical region of a vagus nerve. The microstimulator can address several types of stimulation including regular dose delivery. The wearable charger may be worn around the subject's neck to rapidly (<10 minutes per week) charge an implanted microstimulator. The external controller may be configured as a prescription pad that controls the dosing and activity of the microstimulator.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 7, 2014
    Assignee: SetPoint Medical Corporation
    Inventors: Michael A. Faltys, Jesse M. Simon, Yiming Liu