Patents by Inventor Jesse R. Cheatham, III

Jesse R. Cheatham, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180034973
    Abstract: A system for monitoring a building having one or more microphones coupled to a telephone includes a detector configured to detect a triggering event within the building and transmit an activating signal when the triggering event is detected, and a control module configured to receive the activating signal from the detector. The control module is programmed to activate at least one of the one or more microphones to monitor sound when the activating signal is received.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: EDWARD S. BOYDEN, JESSE R. CHEATHAM, III, WILLIAM D. DUNCAN, BRAN FERREN, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, STEPHEN L. MALASKA, NATHAN P. MYHRVOLD, DAVID B. TUCKERMAN, LOWELL L. WOOD, JR.
  • Publication number: 20180027894
    Abstract: Embodiments disclosed herein are directed to systems for automatically protecting an individual from injuries using one or more sensors, one or more rigid members, and one or more inflatable members associated therewith, and methods of using the same.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Inventors: Mahalaxmi Gita Bangera, Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Elizabeth A. Sweeney, Lowell L. Wood, JR.
  • Publication number: 20180027909
    Abstract: Embodiments disclosed herein are directed to protective garments and systems that include a protective garment for protecting one or more body regions of an individual wearing the protective garment.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Inventors: Mahalaxmi Gita Bangera, Jesse R. Cheatham, III, Hon Wah Chin, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Elizabeth A. Sweeney
  • Patent number: 9878786
    Abstract: A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: January 30, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, TOny S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9878787
    Abstract: A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: January 30, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20180016027
    Abstract: A system and method for payload management for a UAV/aircraft is disclosed. UAV/craft may be configured for a mission with aerodynamically-exposed payload to be delivered from originator to destination on a route in operating conditions. UAV/aircraft may provide an aerodynamic profile indicative of the expected aerodynamic performance in view of considerations such as flight characteristics and effects; a base aerodynamic profile without payload and a loaded aerodynamic profile with payload may be determined. The system and method may comprise estimation/determination and assessment/transaction of a freight charge for the mission based on aerodynamic profile and other considerations; freight charge may comprise a surcharge or penalty based on performance using unit reference points and factors/considerations. UAV/aircraft system can be configured and operated/managed to interface with the system; missions may be optimized based on freight charge or other considerations.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Inventors: JESSE R. CHEATHAM, III, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, YAROSLAV A. URZHUMOV, LOWELL L. WOOD, JR.
  • Publication number: 20180018895
    Abstract: Described embodiments include a self-propelled vehicle, method, and system. The self-propelled vehicle includes an autonomous driving system configured to dynamically determine maneuvers operating the vehicle along a route in an automated mode without continuous input from a human driver. The vehicle includes an input device configured to receive a real-time request for a specific dynamic maneuver by the vehicle operating along the route from the human driver. The vehicle includes a decision circuit configured to select a real-time dynamic maneuver by arbitrating between (i) the received real-time request for the specific dynamic maneuver from the human driver and (ii) a real-time determination relative to the specific dynamic maneuver received from the autonomous driving system. The vehicle includes an implementation circuit configured to output the selected real-time dynamic maneuver to an operations system of the vehicle.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: ALISTAIR K. CHAN, JESSE R. CHEATHAM, III, HON WAH CHIN, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, DAVID B. TUCKERMAN, THOMAS ALLAN WEAVER
  • Publication number: 20180011540
    Abstract: Described embodiments include a system and a method. A system includes a first ultrasound transmitter acoustically coupled to a conducting layer of a display surface and configured to deliver a first ultrasound wave to a selected delineated area. The first ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A second ultrasound transmitter is acoustically coupled to the conducting layer and configured to deliver a second ultrasound wave to the selected delineated area. The second ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A controller selects a delineated area in response to an indication of a touch to the display surface, and initiates delivery of the first and second ultrasonic waves. A convergence of the first and second ultrasonic waves at the selected delineated area produces a stress pattern perceivable or discernible by the human appendage.
    Type: Application
    Filed: September 20, 2017
    Publication date: January 11, 2018
    Inventors: Jesse R. Cheatham, III, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170372697
    Abstract: A sound processing system includes a sound input device for providing a sound input, a sound output device for providing a sound output, and processing electronics including a processor and a memory, wherein the processing electronics is configured to receive a target sound input identifying a target sound, receive a rule input establishing a sound processing rule that references the target sound, receive a sound input from the sound input device, analyze the sound input for the target sound, process the sound input according to the sound processing rule in view of the analysis of the sound input, and provide a processed sound output to the sound output device.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 28, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood,, JR., Victoria Y.H. Wood
  • Publication number: 20170371038
    Abstract: The present disclosure provides systems and methods associated with determining velocity and/or acceleration information using ultrasound. A system may include one or more ultrasonic transmitters and/or receivers. An ultrasonic transmitter may be configured to transmit ultrasound into a region bounded by one or more surfaces. The ultrasonic receiver may detect a Doppler shift of reflected ultrasound to determine an acceleration and/or velocity associated with an object. The velocity and/or acceleration information may be utilized to modify the state of a gaming system, entertainment system, infotainment system, and/or other device. The velocity and/or acceleration date may be used in combination with a mapping or positioning system that generates positional data associated with the objects.
    Type: Application
    Filed: August 21, 2017
    Publication date: December 28, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Victoria Y.H. Wood
  • Patent number: 9824845
    Abstract: A field emission device is configured as a heat engine, wherein the configuration of the heat engine is variable.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: November 21, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood, Roderick A. Hyde
  • Publication number: 20170325533
    Abstract: An airbag inflation system includes a processing circuit configured to receive object data including positional data regarding an object and at least one of a relative velocity and a relative acceleration of the object relative to a first helmet and control operation of an inflation device to inflate an airbag based on the object data.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 16, 2017
    Applicant: Elwha LLC
    Inventors: Paul G. Allen, Philip V. Bayly, David L. Brody, Jesse R. Cheatham, III, Richard G. Ellenbogen, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Raul Radovitzky, Anthony V. Smith, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170319840
    Abstract: Described embodiments include a system, method, and apparatus. A system includes an extracellular-fluid collection device configured to be positioned at a location on a skin of a mammal. In an embodiment, the mammal includes a live human. The system includes an ultrasonic wave transmitter configured to emit ultrasonic shear waves directable at the location. The ultrasonic shear waves have a frequency or amplitude selected to increase a permeability of the skin of the mammal to an extracellular-fluid. In an embodiment, the system includes a sensor configured to determine a rate or amount of extracellular-fluid collected by the extracellular-fluid collection device. In an embodiment, the system includes a fluid collection controller configured to regulate a parameter of ultrasonic shear waves transmitted by the ultrasonic wave transmitter in response to a determined rate or amount of fluid collected by the extracellular-fluid collection device.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 9, 2017
    Inventors: JESSE R. CHEATHAM, III, JOEL CHERKIS, PAUL H. DIETZ, TOM DRISCOLL, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, NEIL JORDAN, JORDIN T. KARE, ERIC C. LEUTHARDT, NATHAN P. MYHRVOLD, PATRICK NEILL, TONY S. PAN, ROBERT C. PETROSKI, DAVID R. SMITH, ELIZABETH A. SWEENEY, DESNY S. TAN, CLARENCE T. TEGREENE, DAVID LAWRENCE TENNENHOUSE, YAROSLAV A. URZHUMOV, GARY WACHOWICZ, LOWELL L. WOOD, JR., VICTORIA Y.H. WOOD
  • Publication number: 20170319841
    Abstract: Described embodiments include a system, method, and apparatus. A system includes a medicament-eluting device configured to be positioned at a location on a skin of a mammal. The system includes an ultrasonic wave transmitter configured to emit ultrasonic shear waves directable at the location. The ultrasonic shear waves have a frequency or amplitude selected to increase a permeability of the skin of the mammal to a medicament released by the medicament-eluting device. In an embodiment, the system includes a structure carrying the medicament-eluting device and the ultrasonic wave transmitter. In an embodiment, the system includes a cavitation sensor configured to detect a cavitation event in the mammal. In an embodiment, the system includes a cavitation controller configured to limit a power of the ultrasonic shear waves directed at the location to a level below a cavitation threshold of the mammal.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 9, 2017
    Inventors: JESSE R. CHEATHAM, III, JOEL CHERKIS, PAUL H. DIETZ, TOM DRISCOLL, WILLIAM GATES, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, NEIL JORDAN, JORDIN T. KARE, ERIC C. LEUTHARDT, NATHAN P. MYHRVOLD, PATRICK NEILL, TONY S. PAN, ROBERT C. PETROSKI, DAVID R. SMITH, ELIZABETH A. SWEENEY, DESNY S. TAN, CLARENCE T. TEGREENE, DAVID LAWRENCE TENNENHOUSE, YAROSLAV A. URZHUMOV, GARY WACHOWICZ, LOWELL L. WOOD, JR., VICTORIA Y.H. WOOD
  • Publication number: 20170323572
    Abstract: A system and method for management of airspace for unmanned aircraft is disclosed. The system and method comprises administration of the airspace including designation of flyways and zones with reference to features in the region. The system and method comprises administration of aircraft including registration of aircraft and mission. A monitoring system tracks conditions and aircraft traffic in the airspace. Aircraft may be configured to transact with the management system including to obtain rights/priority by license and to operate in the airspace under direction of the system. The system and aircraft may be configured for dynamic transactions (e.g. licensing/routing). The system will set rates for licenses and use/access to the airspace and aircraft will be billed/pay for use/access of the airspace at rates using data from data sources.
    Type: Application
    Filed: July 6, 2017
    Publication date: November 9, 2017
    Inventors: ALISTAIR K. CHAN, JESSE R. CHEATHAM, III, WILLIAM DAVID DUNCAN, EUN YOUNG HWANG, RODERICK A. HYDE, TONY S. PAN, CLARENCE T. TEGREENE, VICTORIA Y. H. WOOD
  • Publication number: 20170323257
    Abstract: An unmanned aerial vehicle (UAV) may be used to deliver a package. The UAV may include a communication interface configured to receive a request to transport a package from a customer and a navigation unit configured to direct the UAV to the package. The UAV may also include a sensor configured to determine at least one of a weight and a plurality of dimensions of the package and a schedule unit configured to adjust a pick up schedule for a one or more other packages based on at least one of the weight and the plurality of dimensions of the package.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 9, 2017
    Inventors: Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Jr., Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, Jr., Victoria Y.H. Wood
  • Publication number: 20170323256
    Abstract: An unmanned aerial vehicle (UAV) may be used to deliver a package. The UAV may include a communication interface configured to receive a request to transport a package from a customer and a navigation unit configured to direct the UAV to the package. The UAV may also include a sensor configured to determine one or more physical characteristics of the package and a calculation unit configured to calculate adjusted freight charges by comparing anticipated freight charges based on one or more physical characteristics of the package specified in the request to the one or more physical characteristics of the package determined by the sensor. The UAV may further include an acceptance unit configured to accept the package for transport based on the acceptance of the adjusted freight charges by the customer.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 9, 2017
    Inventors: Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, JR., Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9810819
    Abstract: The present disclosure relates to camouflaged systems and related camouflaging methods. The camouflaged systems can include at least one camouflaged object, including but not limited to transmission lines and transmission towers. One or more surfaces of the camouflaged object can be configured to appear like (e.g., match, mimic, simulate, correspond to, or otherwise blend with) an environmental condition, which can include any variety of background environmental landscapes. For example, one or more surfaces of the camouflaged object can be painted, coated, or imparted with a texture such that they reflect light in a way that corresponds to any particular environmental condition.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: November 7, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Geoffrey F. Deane, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9804303
    Abstract: The present disclosure is directed to systems for tuning nanocube plasmonic resonators and methods for forming tunable plasmonic resonators. A tunable plasmonic resonator system can include a substrate and a nanostructure positioned on a surface of the substrate. The substrate can include a semiconductor material having a carrier density distribution. A junction can be formed between the nanostructure and the substrate forming a Schottky junction. Changing the carrier density distribution of the semiconductor material can change a plasmonic response of the plasmonic resonator.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: October 31, 2017
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, David R. Smith, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9804602
    Abstract: Described embodiments include a system, method, and apparatus. A system includes a package management system for operating a robotic vehicle configured to transport consumer items selected by a human shopper from a consumer shopping environment and placed in the robotic vehicle. The package management system includes circuitry for recognizing an individual human shopper. The system includes circuitry for receiving data indicative of a location of the individual human shopper in the consumer shopping environment. The system includes circuitry for routing the robotic vehicle to the location of the individual human shopper in the consumer shopping environment. In an embodiment, the package management system includes circuitry for issuing an alarm upon detection of an unauthorized removal or attempted unauthorized removal of a consumer item from the secure portion of the robotic vehicle.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 31, 2017
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Lowell L. Wood, Jr.