Patents by Inventor Jesse Robert Stone

Jesse Robert Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7027534
    Abstract: Techniques are provided for fine-tuning estimates of a delay value for a sampled signal. One aspect of the invention is to perform, for the sampled signal, coarse-grained calculations of the In Phase and Quadrature (I and Q) correlation integrals at a limited number of points, wherein the calculations are performed over a range of hypothesized delay values. A range of delay values of interest are then determined from the coarse-grained calculations of the I and Q correlation integrals. A subset of I and Q values based on the coarse granularity calculations of the I and Q correlation functions is used to perform a time-domain interpolation to obtain fine-grained values of the I and Q integrals in the range of the delay values of interest. Magnitude calculations are performed based on the fine-grained values of the I and Q integrals. Fine-tuned estimates of delay value are based on the magnitude calculations. Alternatively, fine-tuned estimates of delay value are based on the template-matching approach.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 11, 2006
    Assignee: SiRF Technology, Inc.
    Inventors: Anant Sahai, John Tsitsiklis, Stefano Casadei, Andrew Chou, Benjamin Van Roy, Jesse Robert Stone
  • Publication number: 20030156665
    Abstract: Techniques are provided for fine-tuning estimates of a delay value for a sampled signal. One aspect of the invention is to perform, for the sampled signal, coarse-grained calculations of the In Phase and Quadrature (I and Q) correlation integrals at a limited number of points, wherein the calculations are performed over a range of hypothesized delay values. A range of delay values of interest are then determined from the coarse-grained calculations of the I and Q correlation integrals. A subset of I and Q values based on the coarse granularity calculations of the I and Q correlation functions is used to perform a time-domain interpolation to obtain fine-grained values of the I and Q integrals in the range of the delay values of interest. Magnitude calculations are performed based on the fine-grained values of the I and Q integrals. Fine-tuned estimates of delay value are based on the magnitude calculations. Alternatively, fine-tuned estimates of delay value are based on the template-matching approach.
    Type: Application
    Filed: June 22, 2001
    Publication date: August 21, 2003
    Inventors: Anant Sahai, John Tsitsiklis, Stefano Casadei, Andrew Chou, Benjamin Van Roy, Jesse Robert Stone
  • Patent number: 6535163
    Abstract: To determine the location of a signal receiver, sampled data received from a receiver is divided into data segments of increasing length. Current ranges for a delay value and for a modulation frequency value are calculated relative to each satellite signal source that is overhead the signal receiver. Using the data segments of increasing length, the current ranges, estimates for the delay value and for the modulation frequency value are then iteratively calculated and updated. For each signal source, I and Q correlation integrals and their magnitude values are calculated using the modulation frequency value estimate and each of a range of delay values centered around the delay value estimate. The resulting magnitude-curve is interpolated using the calculated magnitude values. The location of the receiver is calculated using the shape of the magnitude-curve to represent the I and Q correlation integrals for each signal source.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: March 18, 2003
    Assignee: Enuvis, Inc.
    Inventors: Anant Sahai, John Tsitsiklis, Benjamin Van Roy, Andrew Chou, Wallace Mann, Jesse Robert Stone, Wungkum Fong