Patents by Inventor Jesse Salb

Jesse Salb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6923950
    Abstract: System and method for radiographic imaging of tissue using a non-radioactive, radio-opaque imaging agent that accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell-membrane permeable, radio-opaque, high affinity ligand for the intracellular enzyme hexokinase. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in malignant tissue and increases its radio-opacity because of its elevated glucose metabolic rate relative to benign and normal tissue. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a single displayed image.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: August 2, 2005
    Assignee: Veritas Pharmaceuticals, Inc.
    Inventor: Jesse Salb
  • Publication number: 20040170561
    Abstract: Systems and methods for radiographic imaging of tissue using a radio-opaque imaging agent that in one embodiment accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell membrane-permeable, radio-opaque, high affinity ligand for an intracellular target. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in certain types of tissue and increases its radio-opacity. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system may perform a weighted combination of the acquired images to produce a single displayed image. The system and method thus provides a functional image displayed with the anatomical detail and spatial resolution of a radiographic image.
    Type: Application
    Filed: March 2, 2004
    Publication date: September 2, 2004
    Inventors: Jesse Salb, Nicholas Cairns
  • Patent number: 6751290
    Abstract: Radiographic system and method for noninvasively assessing the response of tissue to a compound, such as a therapeutic compound. In one embodiment, a non-radioactive, radio-opaque imaging agent accumulates in tissue in proportion to the tissue concentration of a predefined cellular target. The imaging agent is administered to a live organism, and after an accumulation interval, radiographic images are acquired. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a first image. The image processing procedure isolates the radiographic density contributed solely by differential tissue accumulation of the imaging agent. A compound is administered to the organism, and after a selected interval, a second radiographic image of the tissue is acquired.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: June 15, 2004
    Assignee: Veritas Pharmaceuticals, Inc.
    Inventor: Jesse Salb
  • Patent number: 6723746
    Abstract: Systems and methods for radiographic imaging of tissue using a radio-opaque imaging agent that in one embodiment accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell membrane-permeable, radio-opaque, high affinity ligand for an intracellular target. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in certain types of tissue and increases its radio-opacity. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system may perform a weighted combination of the acquired images to produce a single displayed image. The system and method thus provides a functional image displayed with the anatomical detail and spatial resolution of a radiographic image.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: April 20, 2004
    Assignee: Veritas Pharmaceuticals, Inc.
    Inventors: Jesse Salb, Nicholas Cairns
  • Publication number: 20030091508
    Abstract: System and method for radiographic imaging of tissue using a non-radioactive, radio-opaque imaging agent that accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell-membrane permeable, radio-opaque, high affinity ligand for the intracellular enzyme hexokinase. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in malignant tissue and increases its radio-opacity because of its elevated glucose metabolic rate relative to benign and normal tissue. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a single displayed image.
    Type: Application
    Filed: June 14, 2002
    Publication date: May 15, 2003
    Applicant: Veritas Pharmaceuticals, Inc.
    Inventor: Jesse Salb
  • Publication number: 20020039401
    Abstract: Radiographic system and method for noninvasively assessing the response of tissue to a compound, such as a therapeutic compound. In one embodiment, a non-radioactive, radio-opaque imaging agent accumulates in tissue in proportion to the tissue concentration of a predefined cellular target. The imaging agent is administered to a live organism, and after an accumulation interval, radiographic images are acquired. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a first image. The image processing procedure isolates the radiographic density contributed solely by differential tissue accumulation of the imaging agent. A compound is administered to the organism, and after a selected interval, a second radiographic image of the tissue is acquired.
    Type: Application
    Filed: March 16, 2001
    Publication date: April 4, 2002
    Inventor: Jesse Salb
  • Publication number: 20010038682
    Abstract: Radiographic system and method for noninvasively assessing the response of tissue to a compound, such as a therapeutic compound, in vivo. In one embodiment, a non-radioactive, radio-opaque imaging agent accumulates in tissue in proportion to the tissue concentration of a predefined cellular target. The imaging agent is administered to a live organism, and after an accumulation interval, radiographic images are acquired. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a first image. The image processing procedure isolates the radiographic density contributed solely by differential tissue accumulation of the imaging agent. A compound is administered to the organism, and after a selected interval, a second radiographic image of the tissue is acquired.
    Type: Application
    Filed: March 15, 2001
    Publication date: November 8, 2001
    Inventor: Jesse Salb
  • Publication number: 20010031035
    Abstract: Systems and methods for radiographic imaging of tissue using a radio-opaque imaging agent that in one embodiment accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell membrane-permeable, radio-opaque, high affinity ligand for an intracellular target. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in certain types of tissue and increases its radio-opacity. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system may perform a weighted combination of the acquired images to produce a single displayed image. The system and method thus provides a functional image displayed with the anatomical detail and spatial resolution of a radiographic image.
    Type: Application
    Filed: March 15, 2001
    Publication date: October 18, 2001
    Inventors: Jesse Salb, Nicholas Cairns
  • Publication number: 20010001011
    Abstract: System and method for radiographic imaging of tissue using a non-radioactive, radio-opaque imaging agent that accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell-membrane permeable, radio-opaque, high affinity ligand for the intracellular enzyme hexokinase. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in malignant tissue and increases its radio-opacity because of its elevated glucose metabolic rate relative to benign and normal tissue. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a single displayed image.
    Type: Application
    Filed: December 29, 2000
    Publication date: May 10, 2001
    Inventor: Jesse Salb
  • Patent number: 6226352
    Abstract: System and method for radiographic imaging of tissue using a non-radioactive, radio-opaque imaging agent that accumulates intracellularly in tissue in proportion to its functional, or physiological, activity. In one embodiment, the imaging agent is a cell-membrane permeable, radio-opaque, high affinity ligand for the intracellular enzyme hexokinase. The imaging agent is administered to a patient, and after an accumulation interval, radiographic images are acquired. The imaging agent preferentially accumulates in malignant tissue and increases its radio-opacity because of its elevated glucose metabolic rate relative to benign and normal tissue. The tissue being examined is transilluminated by X-ray beams with preselected different mean energy spectra, and a separate radiographic image is acquired during transillumination by each beam. An image processing system performs a weighted combination of the acquired images to produce a single displayed image.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: May 1, 2001
    Assignee: Veritas Pharmaceuticals, Inc.
    Inventor: Jesse Salb
  • Patent number: 5408996
    Abstract: System and method for detection and localization of malignant tissue in situ during a medical procedure such as endoscopy or surgery. A fluorescent metabolic imaging agent, consisting of a carbohydrate analog coupled to a fluorophore in a manner such that the imaging agent accumulates in tissue in proportion to the glucose metabolic rate of the tissue, is systemically or locally injected into a patient before commencement of the endoscopic or surgical procedure. After a period of time during which the imaging agent accumulates in the body tissue, the tissue under examination in the endoscopic or surgical field of view is illuminated by a broadband light source filtered by an optical bandpass excitation filter to transmit light at the fluorescent excitation wavelength of the imaging agent. An optical bandpass emission filter filters the light emitted from the illuminated tissue to transmit light at the fluorescent emission wavelength of the imaging agent to a high-sensitivity cooled-CCD video camera.
    Type: Grant
    Filed: March 25, 1993
    Date of Patent: April 25, 1995
    Inventor: Jesse Salb
  • Patent number: 5198977
    Abstract: System and method for the localization of functional activity in the human brain during neurosurgery. The system includes an electronic flash illuminator for illuminating the surface of the exposed portion of the patient's brain, optical bandpass filters for sequentially illuminating the exposed brain surface with monochromatic light of a number of predetermined wavelengths, a positioning mechanism for rapid positioning of the optical filters in the path of illumination, a video camera for acquiring an image of the exposed brain surface during illumination with each wavelength of monochromatic light, a circuit for converting the linear output signal of the video camera into a logarithmic signal in video format, a digitizer and frame storage memory for digitizing the logarithmic video signal to obtain multiple two-dimensional matrices. Each matrix represents the magnitude of light reflected at a particular wavelength from a regular grid of points over the exposed brain surface.
    Type: Grant
    Filed: November 27, 1990
    Date of Patent: March 30, 1993
    Inventor: Jesse Salb
  • Patent number: 4736307
    Abstract: A system for the on-line analysis and topographic display of human brain electrical activity which includes amplifying filtering and converter circuits for generating a plurality of signals, representing electrical activity at a plurality of predetermined data point locations on a patient's head in digital form, a first microprocessor and associated circuits to preprocess the digital signals into a predetermined format, and a second microprocessor and associated topographic map generator forming an image computation and display unit receiving the preprocessed digital signals as inputs from the image computation and display unit the topographic map generator defining a map of a plan or elevation view of the brain containing a plurality of pixel points far in excess of the number of data points and interpolating the digital signals, so as to provide a value for each pixel on the map and providing the pixel information as outputs in synchronism with a horizontal and vertical scan, and a video monitor receiving t
    Type: Grant
    Filed: April 4, 1986
    Date of Patent: April 5, 1988
    Assignee: Neuroscience, Inc.
    Inventor: Jesse Salb
  • Patent number: 4583190
    Abstract: A system for the on-line analysis and topographic display of human brain electrical activity which includes amplifying filtering and converter circuits for generating a plurality of signals, representing electrical activity at a plurality of predetermined data point locations on a patient's head in digital form, a first microprocessor and associated circuits to preprocess the digital signals into a predetermined format, and a second microprocessor and associated topographic map generator forming an image computation and display unit receiving the preprocessed digital signals as inputs from the image computation and display unit the topographic mag generator defining a map of a plan or elevation view of the brain containing a plurality of pixel points far in excess of the number of data points and interpolating the digital signals, so as to provide a value for each pixel on the map and providing the pixel information as outputs in synchronism with a horizontal and vertical scan, and a video monitor receiving t
    Type: Grant
    Filed: April 21, 1982
    Date of Patent: April 15, 1986
    Assignee: NeuroScience, Inc.
    Inventor: Jesse Salb