Patents by Inventor Jesse W. Hartley

Jesse W. Hartley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040215259
    Abstract: A cardiac rhythm management system is capable of treating irregular ventricular heart contractions, such as during atrial tachyarrhythmias such as atrial fibrillation. A first indicated pacing interval is computed based at least partially on a most recent V-V interval duration between ventricular beats and a previous value of the first indicated pacing interval. Pacing therapy is provided based on either the first indicated pacing interval or also based on a second indicated pacing interval, such as a sensor-indicated pacing interval. A weighted averager such as an infinite impulse response (IIR) filter adjusts the first indicated pacing interval for sensed beats and differently adjusts the first indicated pacing interval for paced beats. The system regularizes ventricular rhythms by pacing the ventricle, but inhibits pacing when the ventricular rhythms are stable.
    Type: Application
    Filed: May 24, 2004
    Publication date: October 28, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: David B. Krig, Jesse W. Hartley, Wyatt Stahl, Jeffrey E. Stahmann
  • Publication number: 20040215245
    Abstract: A method and device for delivering defibrillation shock therapy in patients having an inter-ventricular conduction disorder is presented. Ventricular resynchronization therapy is employed to reduce the dispersion of ventricular depolarization which takes place due to the conduction disorder and reduces the safety 10 margin of shocks delivered synchronously with ventricular beats. The method may be employed in the treatment of atrial or ventricular tachyarrhythmias.
    Type: Application
    Filed: December 24, 2003
    Publication date: October 28, 2004
    Inventors: Jeffrey E. Stahmann, Jesse W. Hartley, Steven D. Girouard
  • Patent number: 6772009
    Abstract: A method and apparatus for automatically adjusting the sensing threshold of cardiac rhythm management devices. The invention is particularly suited for implementation in devices such as implantable cardiac pacemakers and implantable cardioverter/defibrillators. A method and apparatus are provided in which a noise level and signal level for a sensing channel are determined for each cardiac cycle with the sensing threshold of the channel being adjusted in accordance therewith.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: August 3, 2004
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Geng Zhang, Qingsheng Zhu, Laura Mepham, Jesse W. Hartley
  • Publication number: 20040111040
    Abstract: Devices and methods for detecting disordered breathing involve determining that the patient is asleep and sensing one or more signals associated with disordered breathing indicative of sleep-disordered breathing while the patient is asleep. Sleep-disordered breathing is detected using the sensed signals associated with disordered breathing. The sensed signals associated with disordered breathing may also be used to acquire a respiration pattern of one or more respiration cycles. Characteristics of the respiration pattern are determined. The respiration pattern is classified as a disordered breathing episode based on the characteristics of the respiration pattern. One or more processes involved in the detection of disordered breathing are performed using an implantable device.
    Type: Application
    Filed: December 4, 2002
    Publication date: June 10, 2004
    Inventors: Quan Ni, John D. Hatlestad, Jesse W. Hartley, Jeff E. Stahmann, Jaeho Kim, Kent Lee
  • Publication number: 20030105499
    Abstract: A cardiac rhythm management (CRM) device detects transthoracic impedance, extracts ventilation or other information, and adjusts a delivery rate of the CRM therapy accordingly. A four-phase sequence of alternating direction current pulse stimuli is periodically delivered to a patient's thorax. A transthoracic impedance signal is extracted using a weighted demodulation. Signal processing extracts ventilation information and removes cardiac stroke information using an adaptive lowpass filter. The adaptive filter cutoff frequency is based on the patient's heart rate; a higher cutoff frequency is provided for higher heart rates. Peak/valley detection indicates tidal volume, which is integrated to extract minute ventilation (MV). Short and long term averages are formed and compared to establish a MV indicated rate. Rate adjustment ignores MV information when a noise-measurement exceeds a threshold.
    Type: Application
    Filed: October 8, 2002
    Publication date: June 5, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Marc H. Cohen, Nicholas J. Stessman, Scott A. Reedstrom, Steven D. Check, James P. Nelson
  • Publication number: 20030004551
    Abstract: A cardiac rhythm management system includes atrial shock timing optimization. Because an atrial tachyarrhythmia, such as atrial fibrillation typically causes significant variability in the ventricular heart rate, resulting in potentially proarrhythmic conditions. The system avoids delivering atrial cardioversion/defibrillation therapy during potentially proarrhythmic conditions because doing so could result in dangerous ventricular arrhythmias. Using Ventricular Rate Regularization (“VRR”) techniques, the system actively stabilizes the ventricular heart rate to obtain less potentially proarrhythmic conditions for delivering the atrial tachyarrhythmia therapy. The intrinsic ventricular heart rate is stabilized at a variable VRR-indicated rate, computed using an infinite impulse response (IIR) filter, and based on the underlying intrinsic ventricular heart rate.
    Type: Application
    Filed: August 2, 2002
    Publication date: January 2, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Victor T. Chen, Jay A. Warren, Gary T. Seim, David B. Krig, Jesse W. Hartley, Jeffrey E. Stahmann
  • Publication number: 20020165587
    Abstract: A method and apparatus for automatically adjusting the sensing threshold of cardiac rhythm management devices. The invention is particularly suited for implementation in devices such as implantable cardiac pacemakers and implantable cardioverter/defibrillators. A method and apparatus are provided in which a noise level and signal level for a sensing channel are determined for each cardiac cycle with the sensing threshold of the channel being adjusted in accordance therewith.
    Type: Application
    Filed: May 20, 2002
    Publication date: November 7, 2002
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Geng Zhang, Oingsheng Zhu, Laura Mepham, Jesse W. Hartley
  • Patent number: 6463326
    Abstract: A cardiac rhythm management (CRM) device detects transthoracic impedance, extracts ventilation or other information, and adjusts a delivery rate of the CRM therapy accordingly. A four-phase sequence of alternating direction current pulse stimuli is periodically delivered to a patient's thorax. A transthoracic impedance signal is extracted using a weighted demodulation. Signal processing extracts ventilation information and removes cardiac stroke information using an adaptive lowpass filter. The adaptive filter cutoff frequency is based on the patient's heart rate; a higher cutoff frequency is provided for higher heart rates. Peak/valley detection indicates tidal volume, which is integrated to extract minute ventilation (MV). Short and long term averages are formed and compared to establish a MV indicated rate. Rate adjustment ignores MV information when a noise-measurement exceeds a threshold.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: October 8, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Marc H. Cohen, Nicholas J. Stessman, Scott A. Reedstrom, Steven D. Check, James P. Nelson
  • Patent number: 6430438
    Abstract: A cardiac rhythm management system includes atrial shock timing optimization. Because an atrial tachyarrhythmia, such as atrial fibrillation typically causes significant variability in the ventricular heart rate, resulting in potentially proarrhythmic conditions. The system avoids delivering atrial cardioversion/defibrillation therapy during potentially proarrhythmic conditions because doing so could result in dangerous ventricular arrhythmias. Using Ventricular Rate Regularization (“VRR”) techniques, the system actively stabilizes the ventricular heart rate to obtain less potentially proarrhythmic conditions for delivering the atrial tachyarrhythmia therapy. The intrinsic ventricular heart rate is stabilized at a variable VRR-indicated rate, computed using an infinite impulse response (IIR) filter, and based on the underlying intrinsic ventricular heart rate.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: August 6, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Victor T. Chen, Jay A. Warren, Gary T. Seim, David B. Krig, Jesse W. Hartley, Jeffrey E. Stahmann
  • Patent number: 6418343
    Abstract: A method and apparatus for automatically adjusting the sensing threshold of cardiac rhythm management devices. The invention is particularly suited for implementation in devices such as implantable cardiac pacemakers and implantable cardioverter/defibrillators. A method and apparatus are provided in which a noise level and signal level for a sensing channel are determined for each cardiac cycle with the sensing threshold of the channel being adjusted in accordance therewith.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: July 9, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Geng Zhang, Qingsheng Zhu, Laura Mepham, Jesse W. Hartley
  • Patent number: 6411848
    Abstract: A cardiac rhythm management system includes techniques for computing an indicated pacing interval, AV delay, or other timing interval. In one embodiment, a variable indicated pacing interval is computed based at least in part on an underlying intrinsic heart rate. The indicated pacing interval is used to time the delivery of biventricular coordination therapy even when ventricular heart rates are irregular, such as in the presence of atrial fibrillation. In another embodiment, a variable filter indicated AV interval is computed based at least in part on an underlying intrinsic AV interval. The indicated AV interval is used to time the delivery of atrial tracking biventricular coordination therapy when atrial heart rhythms are not arrhythmic. Other indicated timing intervals may be similarly determined. The indicated pacing interval, AV delay, or other timing interval can also be used in combination with a sensor indicated rate indicator.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: June 25, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Jeffrey E. Stahmann, Rene H. Wentkowski, Kenneth L. Baker, Jesse W. Hartley, David B. Krig
  • Patent number: 6353759
    Abstract: A cardiac rhythm management system includes an atrial pacing preference (APP) filter for promoting atrial pacing. The APP filter includes an infinite impulse response (IIR) or other filter that controls the timing of delivery of atrial pacing pulses. The atrial pacing pulses are delivered at an APP-indicated pacing rate that is typically at a small amount above the intrinsic atrial heart rate. For sensed beats, the APP indicated rate is increased until it becomes slightly faster than the intrinsic atrial heart rate. The APP-indicated pacing rate is then gradually decreased to search for the underlying intrinsic atrial heart rate. Then, after a sensed atrial beat, the APP filter again increases the pacing rate until it becomes faster than the intrinsic atrial rate by a small amount. As a result, most atrial heart beats are paced, rather than sensed. This decreases the likelihood of the occurrence of an atrial tachyarrhythima, such as atrial fibrillation.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: March 5, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Andrew P. Kramer, Jeffrey E. Stahmann, David B. Krig
  • Patent number: 6351669
    Abstract: A cardiac rhythm management system includes an atrial pacing preference (APP) filter for promoting atrial pacing. The APP filter includes an infinite impulse response (IIR) or other filter that controls the timing of delivery of atrial pacing pulses. The atrial pacing pulses are delivered at an APP-indicated pacing rate that is typically at a small amount above the intrinsic atrial heart rate. For sensed beats, the APP indicated rate is increased until it becomes slightly faster than the intrinsic atrial heart rate. The APP-indicated pacing rate is then gradually decreased to search for the underlying intrinsic atrial heart rate. Then, after a sensed atrial beat, the APP filter again increases the pacing rate until it becomes faster than the intrinsic atrial rate by a small amount. As a result, most atrial heart beats are paced, rather than sensed. This decreases the likelihood of the occurrence of an atrial tachyarrhythmia, such as atrial fibrillation.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: February 26, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Andrew P. Kramer, Jeffrey E. Stahmann, David B. Krig
  • Patent number: 6285907
    Abstract: A cardiac rhythm management system includes techniques for computing an indicated pacing interval, AV delay, or other timing interval. In one embodiment, a variable indicated pacing interval is computed based at least in part on an underlying intrinsic heart rate. The indicated pacing interval is used to time the delivery of biventricular coordination therapy even when ventricular heart rates are irregular, such as in the presence of atrial fibrillation. In another embodiment, a variable filter indicated AV interval is computed based at least in part on an underlying intrinsic AV interval. The indicated AV interval is used to time the delivery of atrial tracking biventricular coordination therapy when atrial heart rhythms are not arrhythmic. Other indicated timing intervals may be similarly determined. The indicated pacing interval, AV delay, or other timing interval can also be used in combination with a sensor indicated rate indicator.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: September 4, 2001
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Jeffrey E. Stahmann, Rene H. Wentkowski, Kenneth L. Baker, Jesse W. Hartley, David B. Krig
  • Publication number: 20010016759
    Abstract: A cardiac rhythm management system includes techniques for computing an indicated pacing interval, AV delay, or other timing interval. In one embodiment, a variable indicated pacing interval is computed based at least in part on an underlying intrinsic heart rate. The indicated pacing interval is used to time the delivery of biventricular coordination therapy even when ventricular heart rates are irregular, such as in the presence of atrial fibrillation. In another embodiment, a variable filter indicated AV interval is computed based at least in part on an underlying intrinsic AV interval. The indicated AV interval is used to time the delivery of atrial tracking biventricular coordination therapy when atrial heart rhythms are not arrhythmic. Other indicated timing intervals may be similarly determined. The indicated pacing interval, AV delay, or other timing interval can also be used in combination with a sensor indicated rate indicator.
    Type: Application
    Filed: April 18, 2001
    Publication date: August 23, 2001
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Jeffrey E. Stahmann, Rene H. Wentkowski, Kenneth L. Baker, Jesse W. Hartley, David B. Krig
  • Patent number: 6161042
    Abstract: A cardiac rhythm management (CRM) device detects transthoracic impedance, extracts ventilation or other information, and adjusts a delivery rate of the CRM therapy accordingly. A four-phase sequence of alternating direction current pulse stimuli is periodically delivered to a patient's thorax. A transthoracic impedance signal is extracted using a weighted demodulation. Signal processing extracts ventilation information and removes cardiac stroke information using an adaptive lowpass filter. The adaptive filter cutoff frequency is based on the patient's heart rate; a higher cutoff frequency is provided for higher heart rates. Peak/valley detection indicates tidal volume, which is integrated to extract minute ventilation (MV). Short and long term averages are formed and compared to establish a MV indicated rate. Rate adjustment ignores MV information when a noise-measurement exceeds a threshold.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: December 12, 2000
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Marc H. Cohen, Nicholas J. Stessman, Scott A. Reedstrom, Steven D. Check, James P. Nelson
  • Patent number: 6076015
    Abstract: A cardiac rhythm management (CRM) device detects transthoracic impedance, extracts ventilation or other information, and adjusts a delivery rate of the CRM therapy accordingly. A four-phase sequence of alternating direction current pulse stimuli is periodically delivered to a patient's thorax. A transthoracic impedance signal is extracted using a weighted demodulation. Signal processing extracts ventilation information and removes cardiac stroke information using an adaptive lowpass filter. The adaptive filter cutoff frequency is based on the patient's heart rate; a higher cutoff frequency is provided for higher heart rates. Peak/valley detection indicates tidal volume, which is integrated to extract minute ventilation (MV). Short and long term averages are formed and compared to establish a MV indicated rate. Rate adjustment ignores MV information when a noise-measurement exceeds a threshold.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: June 13, 2000
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Marc H. Cohen, Nicholas J. Stessman, Scott A. Reedstrom, Steven D. Check, James P. Nelson
  • Patent number: 6049735
    Abstract: A method and apparatus for cardiac stimulation for addressing vasovagal syncope incorporates a detection algorithm in which a precipitous rate drop from a pre-existing average intrinsic heart rate value to a lower rate limit is sensed and if the patient is awake and the intrinsic rate remains below the lower rate limit for a predetermined number of beats, the patient's heart is paced at a rate that is a programmed differential above the prior average intrinsic rate for a second programmed time interval, at the conclusion of which the pacing rate is gradually decreased to the average heart rate existing prior to the sudden rate drop or to the lower rate limit.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: April 11, 2000
    Assignee: Cardiac Pacemakers Inc.
    Inventors: Jesse W. Hartley, Wyatt Stahl, John Voegele
  • Patent number: 6029086
    Abstract: An implantable cardiac rhythm management device includes a controller adapted to receive digitized electrocardiogram signals from leads placed on or in the heart. The device also incorporates an autosense algorithm which automatically adjusts the sensing threshold dependent upon an average or maximum amplitude of noise detected during a period following a sensed cardiac depolarization. The sensing threshold is automatically set on a beat-to-beat basis at a level such that the signal to noise ratio exceeds a preset value.
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: February 22, 2000
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jungkuk Kim, Jesse W. Hartley, Qingsheng Zhu
  • Patent number: 5957857
    Abstract: An automatic sensing system for an implantable cardiac rhythm management device comprises a variable gain amplifier and associated filters where the gain of the amplifier is adjusted as a function of the peak amplitude of a cardiac depolarization signal (either a P-wave or an R-wave) and especially the relationship of the peak value to a maximum value dictated by the circuit's power supply rail. The trip point comparator has its trip point adjusted as a function of the difference between the detected peak value of the signal of interest and the peak value of noise not eliminated by the filtering employed.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: September 28, 1999
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Jesse W. Hartley