Patents by Inventor Jessi Johnson

Jessi Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950843
    Abstract: An electrosurgical apparatus comprising an electrosurgical forceps instrument that combines la robust jaw opening mechanism with an a microwave energy delivery mechanism. The instrument includes a rigid bracket mounted at a distal end of a flexible shaft, wherein a pair of jaws are pivotably mounted on the rigid bracket. The instrument includes an energy delivery structure comprising a flexible dielectric substrate having a first electrode and an second electrode formed on one of the pair of jaws, wherein the first electrode and the second electrode are arranged to emit microwave energy. The electrosurgical apparatus may also comprise a handpiece that combines rotation control of an electrosurgical instrument with both power delivery and end effector actuation (e.g. jaw closure, blade retraction or the like).
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: April 9, 2024
    Assignee: CREO MEDICAL LIMITED
    Inventors: Christopher Paul Hancock, George Christian Ullrich, David Edward Webb, Louis Turner, Simon Meadowcroft, Jessi Johnson, Miriam Taimisto
  • Patent number: 11944495
    Abstract: An implantable ultrasonic vascular sensor for implantation at a fixed location within a vessel, comprising at least one ultrasound transducer, a transducer drive circuit, and means for wirelessly transmitting ultrasound data from the at least one ultrasound transducer.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 2, 2024
    Assignee: Foundry Innovation & Research 1, Ltd.
    Inventors: Axel Brisken, Jessi Johnson, Douglas S. Sutton, Hanson S. Gifford, III, Mark Deem, Fiachra Sweeney
  • Patent number: 11701018
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: July 18, 2023
    Assignee: Foundry Innovation & Research 1, Ltd.
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley
  • Patent number: 11419513
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: August 23, 2022
    Assignee: Foundry Innovation & Research 1, Ltd.
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley
  • Publication number: 20220240800
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Application
    Filed: April 14, 2022
    Publication date: August 4, 2022
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley
  • Publication number: 20210401305
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley
  • Publication number: 20210401306
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Application
    Filed: September 9, 2021
    Publication date: December 30, 2021
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley, Shriram Raghunathan, Sean Quinlan
  • Patent number: 11206992
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: December 28, 2021
    Assignee: Foundry Innovation & Research 1, Ltd.
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Shriram Raghunathan, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley, Sean Quinlan
  • Publication number: 20210177514
    Abstract: A device for treating tissue has a plurality of conductors that form one or more transmission lines configured to deliver microwave energy to target tissue. In addition to transmission lines, the device also may include an anchor element used to penetrate the target ablation tissue and anchor the device. A system includes the device, a microwave generator, and a coaxial cable. A biocompatible solution may be injected into the target ablation region to alter tissue properties or to facilitate visualization of the ablation region.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 17, 2021
    Inventors: Raj Subramaniam, Jessi Johnson, Mariam H. Taimisto
  • Publication number: 20210038094
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques, including specifically configured anchoring structures for same, are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Application
    Filed: September 11, 2020
    Publication date: February 11, 2021
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Shriram Raghunathan, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley, Sean Quinlan
  • Patent number: 10806352
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: October 20, 2020
    Assignee: Foundry Innovation & Research 1, Ltd.
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Shriram Raghunathan, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley
  • Publication number: 20200253664
    Abstract: An electrosurgical apparatus comprising an electrosurgical forceps instrument that combines la robust jaw opening mechanism with an a microwave energy delivery mechanism. The instrument includes a rigid bracket mounted at a distal end of a flexible shaft, wherein a pair of jaws are pivotably mounted on the rigid bracket. The instrument includes an energy delivery structure comprising a flexible dielectric substrate having a first electrode and an second electrode formed on one of the pair of jaws, wherein the first electrode and the second electrode are arranged to emit microwave energy. The electrosurgical apparatus may also comprise a handpiece that combines rotation control of an electrosurgical instrument with both power delivery and end effector actuation (e.g. jaw closure, blade retraction or the like).
    Type: Application
    Filed: October 12, 2018
    Publication date: August 13, 2020
    Inventors: Christopher Paul HANCOCK, George Christian ULLRICH, David Edward WEBB, Louis TURNER, Simon MEADOWCROFT, Jessi JOHNSON, Miriam TAIMISTO
  • Publication number: 20200253583
    Abstract: An implantable ultrasonic vascular sensor for implantation at a fixed location within a vessel, comprising at least one ultrasound transducer, a transducer drive circuit, and means for wirelessly transmitting ultrasound data from the at least one ultrasound transducer.
    Type: Application
    Filed: May 31, 2018
    Publication date: August 13, 2020
    Inventors: Axel Brisken, Jessi Johnson, Douglas S. Sutton, Hanson S. Gifford, III, Mark Deem, Fiachra Sweeney
  • Publication number: 20190076033
    Abstract: Wireless, variable inductance and resonant circuit-based vascular monitoring devices, systems, methodologies, and techniques are disclosed that can be used to assist healthcare professionals in predicting, preventing, and diagnosing various heart-related and other health conditions.
    Type: Application
    Filed: October 31, 2018
    Publication date: March 14, 2019
    Inventors: Fiachra M. Sweeney, Hanson S. Gifford, III, Jessi Johnson, Pablo Martin, Shriram Raghunathan, Stephen Sheridan, Douglas S. Sutton, Friedrich Wetterling, Conor M. Hanley