Patents by Inventor Jessica Block
Jessica Block has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250025695Abstract: A system may include at least one lead, a stimulation waveform generator, and a controller. The controller may be programmed to implement a process to suggest at least one electrode to be used to stimulate the nerve root. A therapeutic window may be determined for each electrode. For each electrode determining the therapeutic window may include applying stimulation, determining a first stimulation threshold for the applied stimulation to cause a first physiological effect, determining a second stimulation threshold for the applied stimulation to cause a second physiological effect, and determining a difference between the first stimulation threshold and the second stimulation threshold, wherein the difference is the therapeutic window. The process may further include determining at electrode(s) with a minimum value for the therapeutic window, and suggesting the electrode(s) to be used to stimulate the nerve root based on the determined electrode(s) with the minimum value.Type: ApplicationFiled: October 7, 2024Publication date: January 23, 2025Inventors: Jessica Block, Rosana Esteller
-
Patent number: 12194298Abstract: Systems and methods for selectable lateral spinal cord stimulation are discussed. An exemplary neuromodulation system includes a programming device and an electrostimulator. The programming device can receive information about placement of at least one lead in a vicinity of a lateral portion of a spinal cord, identify one or more lateral spinal neural targets based on the information about placement of the at least one lead, and receive a user selection from selectable stimulation modes for stimulating the identified one or more lateral spinal neural targets. The electrostimulator can apply electrostimulation energy to the identified one or more lateral spinal neural targets via the at least one lead in accordance with the user selection from the selectable stimulation modes.Type: GrantFiled: January 31, 2022Date of Patent: January 14, 2025Assignee: Boston Scientific Neuromodulation CorporationInventors: Jessica Block, Rosana Esteller, Rafael Carbunaru
-
Publication number: 20250010075Abstract: Systems and methods for selectable lateral spinal cord stimulation are discussed. An exemplary neuromodulation system includes a programming device and an electrostimulator. The programming device can receive information about placement of at least one lead in a vicinity of a lateral portion of a spinal cord, identify one or more lateral spinal neural targets based on the information about placement of the at least one lead, and receive a user selection from selectable stimulation modes for stimulating the identified one or more lateral spinal neural targets. The electrostimulator can apply electrostimulation energy to the identified one or more lateral spinal neural targets via the at least one lead in accordance with the user selection from the selectable stimulation modes.Type: ApplicationFiled: September 16, 2024Publication date: January 9, 2025Inventors: Jessica Block, Rosana Esteller, Rafael Carbunaru
-
Publication number: 20240382752Abstract: Methods and systems for making adjustments to electrical stimulation based on patient-specific factors can includes the following instructions or actions: receiving information regarding at least one of i) electrical response of patient tissue, ii) patient response to stimulation, or iii) an arrangement of the implanted lead or the electrodes of the implanted lead with respect to patient anatomy; and calculating an electrode weight for each of a plurality of the electrodes of the implanted lead based on the received information.Type: ApplicationFiled: July 30, 2024Publication date: November 21, 2024Inventors: Jessica Block, Andrew James Haddock, Rosana Esteller
-
Patent number: 12138453Abstract: A system may include at least one lead, a stimulation waveform generator, and a controller. The controller may be programmed to implement a process to suggest at least one electrode to be used to stimulate the nerve root. A therapeutic window may be determined for each electrode. For each electrode determining the therapeutic window may include applying stimulation, determining a first stimulation threshold for the applied stimulation to cause a first physiological effect, determining a second stimulation threshold for the applied stimulation to cause a second physiological effect, and determining a difference between the first stimulation threshold and the second stimulation threshold, wherein the difference is the therapeutic window. The process may further include determining at electrode(s) with a minimum value for the therapeutic window, and suggesting the electrode(s) to be used to stimulate the nerve root based on the determined electrode(s) with the minimum value.Type: GrantFiled: September 21, 2021Date of Patent: November 12, 2024Assignee: Boston Scientific Neuromodulation CorporationInventors: Jessica Block, Rosana Esteller
-
Publication number: 20240342476Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.Type: ApplicationFiled: June 26, 2024Publication date: October 17, 2024Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
-
Publication number: 20240325761Abstract: A system may include a neuromodulator and a programmer configured to program the neuromodulator to deliver neuromodulation according to a modulated neurostimulation parameter setting. The modulated neurostimulation parameter setting may include a first modulated neurostimulation parameter waveform and a second modulated neurostimulation parameter waveform, and a phase offset between the first and the second modulated neurostimulation parameter waveforms.Type: ApplicationFiled: March 29, 2024Publication date: October 3, 2024Inventors: Brandon Thio, Tianhe Zhang, Jessica Block
-
Patent number: 12097372Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.Type: GrantFiled: March 29, 2022Date of Patent: September 24, 2024Assignee: Boston Scientific Neuromodulation CorporationInventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
-
Patent number: 12053632Abstract: Methods and systems for making adjustments to electrical stimulation based on patient-specific factors can includes the following instructions or actions: receiving information regarding at least one of i) electrical response of patient tissue, ii) patient response to stimulation, or iii) an arrangement of the implanted lead or the electrodes of the implanted lead with respect to patient anatomy; and calculating an electrode weight for each of a plurality of the electrodes of the implanted lead based on the received information.Type: GrantFiled: July 24, 2020Date of Patent: August 6, 2024Assignee: Boston Scientific Neuromodulation CorporationInventors: Jessica Block, Andrew James Haddock, Rosana Esteller
-
Publication number: 20220347479Abstract: Methods, system, and computer-implementable algorithms are disclosed for determining time-varying pulses for a patient having an implantable stimulator device (ISD). At least one time-invariant tonic stimulation pulse parameter (e.g., amplitude, pulse width, or frequency) is modified by a modulation function to produce time-varying pulses (TVPs), and one or more measurements are taken to determine the effectiveness of the TVP. The measurements may be objective and taken from the patient, and/or subjective and determined based on feedback from the patient. In one example, objective measurements may comprise one or more features determined from an electrospinogram (ESG) signal detected by the ISD, which may include evoked compound action potentials The one or more measurements are used to determine a score for the TVP, which is useful in selecting a best TVP for use with the patient, or for adjusting the modulation function applied to the tonic stimulation parameters.Type: ApplicationFiled: September 24, 2020Publication date: November 3, 2022Inventors: Rosana Esteller, Jessica Block, Changfang Zhu
-
Publication number: 20220241593Abstract: Systems and methods for selectable lateral spinal cord stimulation are discussed. An exemplary neuromodulation system includes a programming device and an electrostimulator. The programming device can receive information about placement of at least one lead in a vicinity of a lateral portion of a spinal cord, identify one or more lateral spinal neural targets based on the information about placement of the at least one lead, and receive a user selection from selectable stimulation modes for stimulating the identified one or more lateral spinal neural targets. The electrostimulator can apply electrostimulation energy to the identified one or more lateral spinal neural targets via the at least one lead in accordance with the user selection from the selectable stimulation modes.Type: ApplicationFiled: January 31, 2022Publication date: August 4, 2022Inventors: Jessica Block, Rosana Esteller, Rafael Carbunaru
-
Publication number: 20220218995Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.Type: ApplicationFiled: March 29, 2022Publication date: July 14, 2022Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
-
Patent number: 11331491Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.Type: GrantFiled: May 20, 2020Date of Patent: May 17, 2022Assignee: Boston Scientific Neuromodulation CorporationInventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
-
Publication number: 20220088386Abstract: A system may include at least one lead, a stimulation waveform generator, and a controller. The controller may be programmed to implement a process to suggest at least one electrode to be used to stimulate the nerve root. A therapeutic window may be determined for each electrode. For each electrode determining the therapeutic window may include applying stimulation, determining a first stimulation threshold for the applied stimulation to cause a first physiological effect, determining a second stimulation threshold for the applied stimulation to cause a second physiological effect, and determining a difference between the first stimulation threshold and the second stimulation threshold, wherein the difference is the therapeutic window. The process may further include determining at electrode(s) with a minimum value for the therapeutic window, and suggesting the electrode(s) to be used to stimulate the nerve root based on the determined electrode(s) with the minimum value.Type: ApplicationFiled: September 21, 2021Publication date: March 24, 2022Inventors: Jessica Block, Rosana Esteller
-
Patent number: 11173308Abstract: Techniques for determining the trajectory of a one or more dorsal roots and utilizing the trajectories to improve a spinal cord stimulation model are disclosed. A first improvement constructs a target stimulation field along a path that is parallel with the determined trajectory that is nearest to a specified desired location of stimulation. An allocation of stimulation among the electrodes to mimic the target field is computed. A second improvement models a response of neural elements at evaluation positions that are parallel with the trajectories based on the electric field that is generated for the computed allocation of stimulation among the electrodes. The stimulation amplitude is adjusted based on the neural element modeling to maintain stimulation intensity, and the stimulation amplitude and allocation of stimulation among the electrodes are compiled into an electrode configuration that is communicated to a neurostimulator.Type: GrantFiled: February 28, 2019Date of Patent: November 16, 2021Assignee: Boston Scientific Neuromodulation CorporationInventors: Natalie Brill, Rosana Esteller, Jessica Block
-
Publication number: 20210023374Abstract: Methods and systems for making adjustments to electrical stimulation based on patient-specific factors can includes the following instructions or actions: receiving information regarding at least one of i) electrical response of patient tissue, ii) patient response to stimulation, or iii) an arrangement of the implanted lead or the electrodes of the implanted lead with respect to patient anatomy; and calculating an electrode weight for each of a plurality of the electrodes of the implanted lead based on the received information.Type: ApplicationFiled: July 24, 2020Publication date: January 28, 2021Inventors: Jessica Block, Andrew James Haddock, Rosana Esteller
-
Publication number: 20200376272Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.Type: ApplicationFiled: May 20, 2020Publication date: December 3, 2020Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
-
Publication number: 20190269919Abstract: Techniques for determining the trajectory of a one or more dorsal roots and utilizing the trajectories to improve a spinal cord stimulation model are disclosed. A first improvement constructs a target stimulation field along a path that is parallel with the determined trajectory that is nearest to a specified desired location of stimulation. An allocation of stimulation among the electrodes to mimic the target field is computed. A second improvement models a response of neural elements at evaluation positions that are parallel with the trajectories based on the electric field that is generated for the computed allocation of stimulation among the electrodes. The stimulation amplitude is adjusted based on the neural element modeling to maintain stimulation intensity, and the stimulation amplitude and allocation of stimulation among the electrodes are compiled into an electrode configuration that is communicated to a neurostimulator.Type: ApplicationFiled: February 28, 2019Publication date: September 5, 2019Inventors: Natalie Brill, Rosana Esteller, Jessica Block