Patents by Inventor Jessica E. Koehne

Jessica E. Koehne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240190066
    Abstract: A device and method for printing 3D articles including electronic and functional elements including 3D printer and a plasma jet printer based on a dielectric barrier atmospheric pressure plasma jet system in which both printing and in-situ treatment and post-deposition treatment can be carried out to tailor the materials characteristics. Plasma jet printer comprising of electrodes in the nozzle/print head for applying electric field and generating atmospheric plasma that could be used for non-gravity based highly directional printing in any direction. Integration of dielectric barrier plasma printer and plasma treatment jets with the 3D printer increases the capability of embedding high performance electronics in a 3D printed structure aiding in additive manufacturing of functional devices. Ability to use a range of materials for print head assembly including micro machined silicon increases the resolution of the plasma jet printer to sub-micron level.
    Type: Application
    Filed: December 19, 2023
    Publication date: June 13, 2024
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Publication number: 20240158918
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Application
    Filed: August 24, 2023
    Publication date: May 16, 2024
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Patent number: 11845216
    Abstract: A device and method for printing 3D articles including electronic and functional elements including 3D printer and a plasma jet printer based on a dielectric barrier atmospheric pressure plasma jet system in which both printing and in-situ treatment and post-deposition treatment can be carried out to tailor the materials characteristics. Plasma jet printer comprising of electrodes in the nozzle/print head for applying electric field and generating atmospheric plasma that could be used for non-gravity based highly directional printing in any direction. Integration of dielectric barrier plasma printer and plasma treatment jets with the 3D printer increases the capability of embedding high performance electronics in a 3D printed structure aiding in additive manufacturing of functional devices. Ability to use a range of materials for print head assembly including micro machined silicon increases the resolution of the plasma jet printer to sub-micron level.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: December 19, 2023
    Assignee: UNIVERSITIES SPACE RESEARCH ASSOCIATION
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Patent number: 11773491
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: October 3, 2023
    Assignee: UNIVERSITIES SPACE RESEARCH ASSOCIATION
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Patent number: 11530484
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: December 20, 2022
    Assignee: UNIVERSITIES SPACE RESEARCH ASSOCIATION
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Publication number: 20220234293
    Abstract: A device and method for printing 3D articles including electronic and functional elements including 3D printer and a plasma jet printer based on a dielectric barrier atmospheric pressure plasma jet system in which both printing and in-situ treatment and post-deposition treatment can be carried out to tailor the materials characteristics. Plasma jet printer comprising of electrodes in the nozzle/print head for applying electric field and generating atmospheric plasma that could be used for non-gravity based highly directional printing in any direction. Integration of dielectric barrier plasma printer and plasma treatment jets with the 3D printer increases the capability of embedding high performance electronics in a 3D printed structure aiding in additive manufacturing of functional devices. Ability to use a range of materials for print head assembly including micro machined silicon increases the resolution of the plasma jet printer to sub-micron level.
    Type: Application
    Filed: February 8, 2022
    Publication date: July 28, 2022
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Patent number: 11241833
    Abstract: A device and method for printing 3D articles including electronic and functional elements including 3D printer and a plasma jet printer based on a dielectric barrier atmospheric pressure plasma jet system in which both printing and in-situ treatment and post-deposition treatment can be carried out to tailor the materials characteristics. Plasma jet printer comprising of electrodes in the nozzle/print head for applying electric field and generating atmospheric plasma that could be used for non-gravity based highly directional printing in any direction. Integration of dielectric barrier plasma printer and plasma treatment jets with the 3D printer increases the capability of embedding high performance electronics in a 3D printed structure aiding in additive manufacturing of functional devices. Ability to use a range of materials for print head assembly including micro machined silicon increases the resolution of the plasma jet printer to sub-micron level.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: February 8, 2022
    Assignee: UNIVERSITIES SPACE RESEARCH ASSOCIATION
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Publication number: 20210381108
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Application
    Filed: August 18, 2021
    Publication date: December 9, 2021
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Publication number: 20210254217
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Application
    Filed: January 21, 2021
    Publication date: August 19, 2021
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Patent number: 10995406
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: May 4, 2021
    Assignee: UNIVERSITIES SPACE RESEARCH ASSOCIATION
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Publication number: 20170298516
    Abstract: Systems and methods for highly reproducible and focused plasma jet printing and patterning of materials using appropriate ink containing aerosol through nozzles with narrow orifice and tubes with controlled dielectric constant connected to high voltage power supply, in the presence of electric field and plasma, that enables morphological and/or bulk chemical modification and/or surface chemical modification of the material in the aerosol and/or the substrate prior to printing, during printing and post printing.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 19, 2017
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne
  • Publication number: 20170259501
    Abstract: A device and method for printing 3D articles including electronic and functional elements including 3D printer and a plasma jet printer based on a dielectric barrier atmospheric pressure plasma jet system in which both printing and in-situ treatment and post-deposition treatment can be carried out to tailor the materials characteristics. Plasma jet printer comprising of electrodes in the nozzle/print head for applying electric field and generating atmospheric plasma that could be used for non- gravity based highly directional printing in any direction. Integration of dielectric barrier plasma printer and plasma treatment jets with the 3D printer increases the capability of embedding high performance electronics in a 3D printed structure aiding in additive manufacturing of functional devices. Ability to use a range of materials for print head assembly including micro machined silicon increases the resolution of the plasma jet printer to sub-micron level.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 14, 2017
    Inventors: Ramprasad Gandhiraman, Meyya Meyyappan, Jessica E. Koehne