Patents by Inventor Jessica J. Sinclair

Jessica J. Sinclair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10808238
    Abstract: The present invention provides a biomolecule conjugate having one or more functionalized biomolecules wherein the biomolecule is functionalized with one or more reactive sites, and at least one polymer capable of undergoing a polymer growth reaction, wherein the polymer is attached to at least one of the reactive sites of the functionalized biomolecule and wherein the polymer envelopes the functionalized biomolecule to form a reversible nanoparticle structure which protects the biomolecule by dynamically collapsing to preserve the biomolecule when an adverse environmental stimulus is present. A method of protecting a biomolecule from environmental conditions is also provided.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: October 20, 2020
    Assignee: FLIR DETECTION, INC.
    Inventors: Jeremy P. Walker, David C. Wilson, Anna M. Leech, Jessica J. Sinclair
  • Patent number: 9452237
    Abstract: A smart antimicrobial material and dressing to inhibit microbial growth is provided. Endogenous chemicals, such as metabolites produced from bacteria are utilized as chemical substrates and converted by enzymes to produce a disinfecting compound that will in turn inhibit the targeted microorganism. The material shall remain passive until such time as it encounters a microbe which expresses and/or secretes specific metabolites or markers. The enzyme or enzymes embedded in the smart material converts the metabolite into a disinfecting compound, which in turn either kills the microorganism or prevents it from multiplying on the surface of the material.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 27, 2016
    Assignee: FLIR Detection, Inc.
    Inventors: Anna M. Leech, Jeremy P. Walker, Scott Donahue, Jermaine D. Johnson, Jessica J. Sinclair
  • Publication number: 20150376594
    Abstract: The present invention provides a biomolecule conjugate having one or more functionalized biomolecules wherein the biomolecule is functionalized with one or more reactive sites, and at least one polymer capable of undergoing a polymer growth reaction, wherein the polymer is attached to at least one of the reactive sites of the functionalized biomolecule and wherein the polymer envelopes the functionalized biomolecule to form a reversible nanoparticle structure which protects the biomolecule by dynamically collapsing to preserve the biomolecule when an adverse environmental stimulus is present. A method of protecting a biomolecule from environmental conditions is also provided.
    Type: Application
    Filed: December 23, 2014
    Publication date: December 31, 2015
    Inventors: Jeremy P. Walker, David C. Wilson, Anna M. Leech, Jessica J. Sinclair
  • Publication number: 20150174283
    Abstract: A smart antimicrobial material and dressing to inhibit microbial growth is provided. Endogenous chemicals, such as metabolites produced from bacteria are utilized as chemical substrates and converted by enzymes to produce a disinfecting compound that will in turn inhibit the targeted microorganism. The material shall remain passive until such time as it encounters a microbe which expresses and/or secretes specific metabolites or markers. The enzyme or enzymes embedded in the smart material converts the metabolite into a disinfecting compound, which in turn either kills the microorganism or prevents it from multiplying on the surface of the material.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 25, 2015
    Inventors: Anna M. Leech, Jeremy P. Walker, Scott Donahue, Jermaine D. Johnson, Jessica J. Sinclair
  • Publication number: 20130344130
    Abstract: A smart antimicrobial material and dressing to inhibit microbial growth is provided. Endogenous chemicals, such as metabolites produced from bacteria are utilized as chemical substrates and converted by enzymes to produce a disinfecting compound that will in turn inhibit the targeted microorganism. The material shall remain passive until such time as it encounters a microbe which expresses and/or secretes specific metabolites or markers. The enzyme or enzymes embedded in the smart material converts the metabolite into a disinfecting compound, which in turn either kills the microorganism or prevents it from multiplying on the surface of the material.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 26, 2013
    Inventors: Anna M. Leech, Jeremy P. Walker, Scott Donahue, Jermaine D. Johnson, Jessica J. Sinclair