Patents by Inventor Jessica L. Childs-Disney

Jessica L. Childs-Disney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230002329
    Abstract: Small molecule compounds and corresponding dimers having inhibitory activity against pre-miR-21 RNA and related methods for treatment of neoplastic disease such as cancer and especially cancers expressing miR-21 are disclosed.
    Type: Application
    Filed: October 29, 2020
    Publication date: January 5, 2023
    Applicant: The University of Florida Research Foundation, Inc.
    Inventors: Matthew David DISNEY, Jessica L. CHILDS-DISNEY
  • Patent number: 10011598
    Abstract: The invention provides a series of bioactive small molecules that target expanded r(CGG) repeats, termed r(CGG)exp, that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Specifically, dimeric compounds incorporating two 9-hydroxyellipticine analog structures can even more potently bind the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG) repeats, such as r(CGG)exp.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 3, 2018
    Assignee: The Scripps Research Institute
    Inventors: Matthew D. Disney, Biao Liu, Jessica L. Childs-Disney, Wang-Yong Yang
  • Patent number: 9719191
    Abstract: Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: August 1, 2017
    Assignee: The Research Foundation for The State University of New York
    Inventors: Matthew D. Disney, Jessica L. Childs-Disney
  • Publication number: 20170152261
    Abstract: The invention provides a series of bioactive small molecules that target expanded r(CGG) repeats, termed r(CGG)exp, that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically. 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Specifically, dimeric compounds incorporating two 9-hydroxyellipticine analog structures can even more potently bind the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG) repeats, such as r(CGG)exp.
    Type: Application
    Filed: January 23, 2017
    Publication date: June 1, 2017
    Inventors: Matthew D. Disney, Biao Liu, Jessica L. Childs-Disney, Wang-Yong Yang
  • Patent number: 9550769
    Abstract: The invention provides a series of bioactive small molecules that target expanded r(CGG) repeats, termed r(CGG)exp, that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Specifically, dimeric compounds incorporating two 9-hydroxyellipticine analog structures can even more potently bind the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG) repeats, such as r(CGG)exp.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 24, 2017
    Assignee: The Scripps Research Institute
    Inventors: Matthew D. Disney, Biao Liu, Jessica L. Childs-Disney, Wang-Yong Yang
  • Publication number: 20150307487
    Abstract: The invention provides a series of bioactive small molecules that target expanded r(CGG) repeats, termed r(CGG)exp, that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5?CG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Specifically, dimeric compounds incorporating two 9-hydroxyellipticine analog structures can even more potently bind the 5?CGG/3?GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp-protein complex. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG) repeats, such as r(CGG)exp.
    Type: Application
    Filed: August 30, 2013
    Publication date: October 29, 2015
    Inventors: Matthew D. Disney, Biao Liu, Jessica L. Childs-Disney, Wang-Yong Yang
  • Publication number: 20080188377
    Abstract: Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.
    Type: Application
    Filed: November 29, 2007
    Publication date: August 7, 2008
    Inventors: Matthew D. Disney, Jessica L. Childs-Disney