Patents by Inventor Jesus Fernandez Rodriguez

Jesus Fernandez Rodriguez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11584781
    Abstract: The present disclosure provides a chimeric receptor binding protein (RBP) resistant to proteolytic digestion wherein said RBP comprises a portion of a receptor binding protein derived from a bacteriophage fused through a designed linker region consisting of 1 to 70 amino acids, to a portion of a receptor binding protein derived from a different bacteriophage, wherein said linker region is designed to be resistant to proteolytic digestion.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: February 21, 2023
    Assignee: ELIGO BIOSCIENCE
    Inventors: Jesus Fernandez Rodriguez, Xavier Duportet
  • Patent number: 11584918
    Abstract: The present disclosure relates generally to methods and compositions for transferring a genetic circuit from one prokaryotic cell (“donor cell”) to another prokaryotic cell (“recipient cell” or “target cell” which are used interchangeably herein). More specifically, the present disclosure relates to prokaryotic donor cells comprising (i) a genetic circuit of interest and (ii) one or more expressed transcriptional repressor proteins and the use of said donor cells in the efficient transfer of the genetic circuit into a prokaryotic recipient cell. The genetic circuit includes nucleic acid sequences encoding a RNA molecule or protein of interest.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: February 21, 2023
    Assignee: ELIGO BIOSCIENCE
    Inventors: Jesus Fernandez Rodriguez, Antonina Krawczyk, Xavier Duportet
  • Patent number: 11534467
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: December 27, 2022
    Assignee: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina Del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11512116
    Abstract: The present disclosure relates generally to bacterial delivery vehicles for use in efficient transfer of a desired payload into a target bacterial cell. More specifically, the present disclosure relates to bacterial delivery vehicles with desired host ranges based on the presence of a chimeric receptor binding protein (RBP) composed of a fusion between the N-terminal region of a RBP derived from a lambda-like bacteriophage and the C-terminal region of a different RBP.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: November 29, 2022
    Assignee: ELIGO BIOSCIENCE
    Inventor: Jesus Fernandez Rodriguez
  • Publication number: 20220364062
    Abstract: The present invention concerns a production bacterial cell for producing phage particles or phage-derived delivery vehicles, said production bacterial cell stably comprising at least one phage structural gene(s) and at least one phage DNA packaging gene(s), said phage structural gene(s) and phage DNA packaging gene(s) being derived from a first type of bacteriophage, wherein the expression of at least one of said phage structural gene(s) and/or at least one of said phage DNA packaging gene(s) in said production bacterial cell is controlled by at least one induction mechanism, and wherein said production bacterial cell is from a bacterial species or strain different from the bacterial species or strain from which said first type of bacteriophage comes and/or that said first type of bacteriophage targets.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 17, 2022
    Inventors: Jesus FERNANDEZ RODRIGUEZ, Antoine DECRULLE, Aymeric LEVEAU, Ines CANADAS BLASCO, Aurélie MATHIEU, Thibault CARLIER
  • Publication number: 20220364063
    Abstract: The present invention concerns a production bacterial cell for producing lytic phage particles or lytic phage-derived delivery vehicles, said production bacterial cell stably comprising at least one phage structural genes and at least one phage DNA packaging genes, said phage structural gene(s) and phage DNA packaging gene(s) being derived from a lytic bacteriophage, wherein the expression of at least one of said phage structural genes and/or at least one of said phage DNA packaging gene(s) in said production bacterial cell is controlled by an induction mechanism.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 17, 2022
    Inventors: Jesus FERNANDEZ RODRIGUEZ, Antoine DECRULLE, Aymeric LEVEAU, Ines CANADAS BLASCO, Aurélie MATHIEU, Thibault CARLIER
  • Publication number: 20220347271
    Abstract: The invention relates to the improvement of endonuclease-based antimicrobials by blocking DNA repair of double-strand break(s) (DSB(s)) in prokaryotic cells. In this respect, the invention especially concerns a method involving blocking DNA repair after a nucleic acid has been submitted to DSB, in particular by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated programmable double-strand endonuclease. The invention particularly relates to the use of an exogenous molecule that inhibits DNA repair, preferably a protein that binds to the ends of the double-stranded break to block DSB repair. The invention also relates to vectors, particularly phagemids and plasmids, comprising nucleic acids encoding nucleases and Gam proteins, and a pharmaceutical composition and a product containing these vectors and their application.
    Type: Application
    Filed: June 3, 2022
    Publication date: November 3, 2022
    Inventors: David BIKARD, Lun CUI, Xavier DUPORTET, Jesus FERNANDEZ RODRIGUEZ
  • Publication number: 20220233610
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 28, 2022
    Applicant: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11376286
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: July 5, 2022
    Assignee: ELIGO BIOSCIENCE
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11357831
    Abstract: The invention relates to the improvement of endonuclease-based antimicrobials by blocking DNA repair of double-strand break(s) (DSB(s)) in prokaryotic cells. In this respect, the invention especially concerns a method involving blocking DNA repair after a nucleic acid has been submitted to DSB, in particular by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated programmable double-strand endonuclease. The invention particularly relates to the use of an exogenous molecule that inhibits DNA repair, preferably a protein that binds to the ends of the double-stranded break to block DSB repair. The invention also relates to vectors, particularly phagemids and plasmids, comprising nucleic acids encoding nucleases and Gam proteins, and a pharmaceutical composition and a product containing these vectors and their application.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: June 14, 2022
    Assignees: INSTITUT PASTEUR, ELIGO BIOSCIENCE
    Inventors: David Bikard, Lun Cui, Xavier Duportet, Jesus Fernandez Rodriguez
  • Publication number: 20220135984
    Abstract: The present invention concerns nucleic acids of interest for modulating the microbiome of a host, to vectors encoding said nucleic acids and to methods for in vivo modulating the microbiome of a subject by delivering said nucleic acid of interest.
    Type: Application
    Filed: December 29, 2021
    Publication date: May 5, 2022
    Inventors: Jesus FERNANDEZ RODRIGUEZ, Xavier Duportet
  • Publication number: 20220119458
    Abstract: The present disclosure provides a chimeric receptor binding protein (RBP) resistant to proteolytic digestion wherein said RBP comprises a portion of a receptor binding protein derived from a bacteriophage fused through a designed linker region consisting of 1 to 70 amino acids, to a portion of a receptor binding protein derived from a different bacteriophage, wherein said linker region is designed to be resistant to proteolytic digestion.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Jesus FERNANDEZ RODRIGUEZ, Xavier DUPORTET
  • Publication number: 20220112247
    Abstract: The present disclosure relates generally to bacterial delivery vehicles for use in efficient transfer of a desired payload into a target bacterial cell. More specifically, the present disclosure relates to bacterial delivery vehicles with desired host ranges based on the presence of a chimeric receptor binding protein (RBP) composed of a fusion between the N-terminal region of a RBP derived from a lambda-like bacteriophage and the C-terminal region of a different RBP.
    Type: Application
    Filed: November 16, 2021
    Publication date: April 14, 2022
    Inventor: Jesus Fernandez Rodriguez
  • Publication number: 20220064223
    Abstract: The present disclosure relates generally to bacterial delivery vehicles for use in efficient transfer of a desired payload into a target bacterial cell. More specifically, the present disclosure relates to bacterial delivery vehicles with desired host ranges based on the presence of a chimeric receptor binding protein (RBP) composed of a fusion between the N-terminal region of a RBP derived from a lambda-like bacteriophage and the C-terminal region of a different RBP, and/or the presence of an engineered branched receptor binding multi-subunit polypeptides (“branched-RBP”).
    Type: Application
    Filed: November 16, 2021
    Publication date: March 3, 2022
    Inventor: Jesus Fernandez Rodriguez
  • Publication number: 20220031767
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Applicant: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11236133
    Abstract: The present disclosure relates generally to bacterial delivery vehicles for use in efficient transfer of a desired payload into a target bacterial cell. More specifically, the present disclosure relates to bacterial delivery vehicles with desired host ranges based on the presence of a chimeric receptor binding protein (RBP) composed of a fusion between the N-terminal region of a RBP derived from a lambda-like bacteriophage and the C-terminal region of a different RBP.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: February 1, 2022
    Assignee: Eligo Bioscience
    Inventor: Jesus Fernandez Rodriguez
  • Patent number: 11224621
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 18, 2022
    Assignee: ELIGO BIOSCIENCE
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11208437
    Abstract: The present disclosure relates generally to bacterial delivery vehicles for use in efficient transfer of a desired payload into a target bacterial cell. More specifically, the present disclosure relates to bacterial delivery vehicles with desired host ranges based on the presence of a chimeric receptor binding protein (RBP) composed of a fusion between the N-terminal region of a RBP derived from a lambda-like bacteriophage and the C-terminal region of a different RBP, and/or the presence of an engineered branched receptor binding multi-subunit polypeptides (“branched-RBP”).
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 28, 2021
    Assignee: Eligo Bioscience
    Inventor: Jesus Fernandez Rodriguez
  • Publication number: 20210380993
    Abstract: The present invention relates to a vector, preferably included in a delivery vehicle, comprising no more than 100, preferably no more than 10, restriction sites recognized by the restriction enzymes encoded by each bacterium of a group of bacteria of interest. The invention also relates to the use of said vector, preferably included in a delivery vehicle, as a drug, especially in the treatment of a disease in a patient in need thereof.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 9, 2021
    Applicants: Eligo Bioscience, Institut Pasteur
    Inventors: Antoine Decrulle, Jesus Fernandez Rodriguez, Xavier Duportet, David Bikard
  • Publication number: 20210315944
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 14, 2021
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel