Patents by Inventor Jeung-Ku Kang

Jeung-Ku Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160079005
    Abstract: Disclosed is a technique for fabricating a bio-photovoltaic cell which includes coupling graminoids extracted from natural grasses to a semiconductor electron acceptor, on which plasmonic silver nanoparticles are aligned, by using an organic ligand material.
    Type: Application
    Filed: December 9, 2014
    Publication date: March 17, 2016
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeung Ku KANG, Gede Widia Pratama Adhyaksa, Dong Ki LEE, II Woo OCK
  • Patent number: 8987164
    Abstract: A semiconductor of which a substance such as a semiconductor photocatalyst is uniformly coated on the surface thereof with a graphitic carbon film and a method of fabricating the same are disclosed. According to the inventive method, a graphitic carbon film having a thickness of 1 nm or less is uniformly formed on the surface of the semiconductor by performing hydrothermal synthesis and pyrolysis on glucose, so as to keep the original structure crystallinity of the semiconductor photocatalyst to be a support of the carbon film.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 24, 2015
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Dong-Ki Lee, Kyu-Sung Han, Weon-Ho Shin, Jung-Woo Lee, Jung-Hoon Choi, Kyung-Min Choi, Yeob Lee
  • Patent number: 8758852
    Abstract: Disclosed is a method for patterning a nanomaterial using solution evaporation. More particularly, the method for patterning a nanomaterial using solution evaporation includes; coating the nanomaterial with a polymer material and uniformly dispersing the coated nanomaterial in a solvent to prepare a solution containing the nanomaterial, and pouring the nanomaterial-containing solution on a substrate, enabling the nanomaterial to be patterned after evaporation of the solvent.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: June 24, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Kyung-Min Choi, Jung-Hoon Choi, Weon-Ho Shin, Jung-Woo Lee, Hyung-Mo Jeong
  • Patent number: 8716171
    Abstract: The present invention relates to preparation of porous gallium (III) oxide [Ga2O3] photocatalyst for production of hydrocarbons a porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method, and a process of producing hydrocarbons using the porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: May 6, 2014
    Assignee: Korea Advanced Instititute of Science and Technology
    Inventors: Jeung-Ku Kang, Hang-Ah Park, Jung-Hoon Choi, Kyung-Min Choi, Dong-Ki Lee
  • Publication number: 20140021589
    Abstract: A semiconductor of which a substance such as a semiconductor photocatalyst is uniformly coated on the surface thereof with a graphitic carbon film and a method of fabricating the same are disclosed. According to the inventive method, a graphitic carbon film having a thickness of 1 nm or less is uniformly formed on the surface of the semiconductor by performing hydrothermal synthesis and pyrolysis on glucose, so as to keep the original structure crystallinity of the semiconductor photocatalyst to be a support of the carbon film.
    Type: Application
    Filed: December 7, 2012
    Publication date: January 23, 2014
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku KANG, Dong-Ki LEE, Kyu-Sung HAN, Weon-Ho SHIN, Jung-Woo LEE, Jung-Hoon CHOI, Kyung-Min CHOI, Yeob LEE
  • Patent number: 8580227
    Abstract: The present inventions are a method for production of hydrogen which decomposes water into hydrogen by oxidation of metals only when the metals are exposed to the water, while preventing oxidation of pure metal nanoparticles using block copolymers and, in addition, hydrogen produced by the method described above. The method of the present invention has advantages of improved convenience and simplicity, achieves a preferable approach for hydrogen storage because the metal nanoparticles enclosed by the block copolymer have the ease of delivery and reaction thereof. Additionally, the method of the present invention only using water and the metal is considered eco-friendly and useful in industrial energy applications.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: November 12, 2013
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Weon-Ho Shin, Jun-Hyeon Bae, Jung-Hoon Choi, Cheol-Ock Song, Kyung-Min Choi
  • Publication number: 20130199923
    Abstract: The present invention relates to a method of manufacturing a heterogeneous catalyst using space specificity, comprising: depositing a metal in a core of micelles provided on a substrate; depositing an oxide around a shell of the micelles after the deposition of the metal in the core of the micelle; and reducing the metal in the core of the micelles after the deposition of the oxide, then, removing the micelles, and a method for generation of hydrogen through decomposing water in the presence of the heterogeneous catalyst prepared according to the aforesaid method under a light source.
    Type: Application
    Filed: June 29, 2012
    Publication date: August 8, 2013
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Junghyo Park, Kyung-Min Choi, Jung-Hoon Choi, Dong-Ki Lee, Hyung-Joon Jeon
  • Publication number: 20130192975
    Abstract: The present invention relates to preparation of porous gallium (III) oxide [Ga2O3] photocatalyst for production of hydrocarbons a porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method, and a process of producing hydrocarbons using the porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method.
    Type: Application
    Filed: June 19, 2012
    Publication date: August 1, 2013
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Hang-Ah Park, Jung-Hoon Choi, Kyung-Min Choi, Dong-Ki Lee
  • Patent number: 8329769
    Abstract: Disclosed is a method for synthesis of micro-porous triple-bond based polymer networks using acetylene gas. According to the disclosed methods for synthesis of micro-porous triple-bond based polymer networks, acetylene gas interconnects building units having iodine and/or bromine functional groups by coupling reactions to provide micro-porous triple-bond based polymer networks.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 11, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Jung-Hoon Choi, Kyung-Min Choi, Hyung-Joon Jeon, Yoon-Jeong Choi, Yeob Lee
  • Publication number: 20120142524
    Abstract: Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
    Type: Application
    Filed: February 9, 2012
    Publication date: June 7, 2012
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeung-Ku KANG, Augustine SAJI, Jung-Woo LEE, Weon-Ho SHIN, Kyu-Sung HAN, Jung-Hoon CHOI
  • Publication number: 20120121499
    Abstract: Disclosed are transition metal-carbon nanotube hybrid catalysts in which a transition metal having high catalytic activity is uniformly distributed on surface of a carbon nanotube containing nitrogen so as to maximize a surface area of the catalyst exhibiting catalytic activity, a method for preparation thereof, and a method for generation of hydrogen from an alkaline medium using the prepared catalyst. The transition metal-carbon nanotube hybrid catalyst containing N2 according to the present invention is effectively used in a variety of industrial applications utilizing hydrogen energy such as a hydrogen storage systems for fuel cells, fuel storage systems for hydrogen fuel vehicles, electric vehicles and/or as energy sources for electronic devices.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 17, 2012
    Applicant: Korea Advanced Instiute of Science and Technology
    Inventors: Jeung Ku KANG, Seong Ho YANG, Weon Ho SHIN, Jun Hyeon BAE
  • Patent number: 8158034
    Abstract: TiO2-xNx (0.01?x?0.2) nanotubes and a method for preparing the same are disclosed. More particularly, TiO2-xNx (0.01?x?0.2) nanotubes doped with nitrogen atoms by treating TiO2 nanotubes through nitrogen plasma to partially substitute oxygen portion of TiO2 nanotube with nitrogen, and a method for preparing the same are disclosed. The TiO2-xNx (0.01?x?0.2) nanotube of the present invention is prepared by doping nitrogen on a TiO2 nanotube to control an electronic structure and reduce a band gap of the TiO2 nanotube, so that the prepared TiO2-xNx (0.01?x?0.2) nanotube exhibits improved conductivity and extended light absorption range from a UV ray area up to a visible light area, thus having more enhanced applicable performance in optical and/or electrochemical aspects.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 17, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Kyu-Sung Han, Jung-Woo Lee, Yong-Mook Kang
  • Patent number: 8137760
    Abstract: Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: March 20, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Augustine Saji, Jung-Woo Lee, Weon-Ho Shin, Kyu-Sung Han, Jung-Hoon Choi
  • Patent number: 8119090
    Abstract: Disclosed is a method for preparation of a nickel-carbonitride sphere, which includes preparing a melamine-formaldehyde resin, adding a nickel salt and a surfactant to the melamine-formaldehyde resin to prepare a nickel-melamine resin mixture, and conducting spray pyrolysis for the mixture to produce nickel-containing powder including nickel-carbonitride spheres. In addition, this method may further include thermal treatment of the nickel-containing powder.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 21, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Se-Yun Kim, Jun-Ho Kwon, Seung-Jun Heo
  • Patent number: 8110255
    Abstract: The present invention discloses a method for preparation of a hybrid comprising magnetite nanoparticles and carbon nitride nanotubes, comprising: preparing carbon nitride nanotubes by plasma chemical vapor deposition (CVD); dissolving the prepared carbon nitride nanotubes in triethyleneglycol to form solution and adding Fe (acetylacetonate)3 to the solution to obtain a mixture; and heating and cooling the mixture to form a hybrid comprising magnetite nanoparticles and carbon nitride nanotubes, in which the carbon nitride nanotubes are doped with magnetite nanoparticles.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: February 7, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Jung-Woo Lee, Ravindranath Viswan, Yoon-Jung Choi, Yeob Lee, Se-Yun Kim
  • Patent number: 8088356
    Abstract: Disclosed are a novel hydrogen storage material with enhanced hydrogen storage capacity prepared by doping an organic framework material with light metal cations, and a method of using the same for hydrogen storage. The present inventive material has at least one phenyl group at each face of a triangular building unit, which is doped with metal cations such as alkali metal cations, alkali-earth metal cations, etc., so that the material exhibits greatly improved capacity of hydrogen absorption and desorption at room temperature and can provide hydrogen storage materials practically adapted for fuel batteries useable even at room temperature.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: January 3, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung Ku Kang, Yoon Jeong Choi, Jung Woo Lee, Jung Hoon Choi
  • Publication number: 20110256316
    Abstract: Disclosed is a method for patterning a nanomaterial using solution evaporation. More particularly, the method for patterning a nanomaterial using solution evaporation includes; coating the nanomaterial with a polymer material and uniformly dispersing the coated nanomaterial in a solvent to prepare a solution containing the nanomaterial, and pouring the nanomaterial-containing solution on a substrate, enabling the nanomaterial to be patterned after evaporation of the solvent.
    Type: Application
    Filed: February 3, 2009
    Publication date: October 20, 2011
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Kyung-Min Choi, Jung-Hoon Choi, Weon-Ho Shin, Jung-Woo Lee, Hyung-Mo Jeong
  • Publication number: 20110236301
    Abstract: Disclosed are a novel hydrogen storage material with enhanced hydrogen storage capacity prepared by doping an organic framework material with light metal cations, and a method of using the same for hydrogen storage. The present inventive material has at least one phenyl group at each face of a triangular building unit, which is doped with metal cations such as alkali metal cations, alkali-earth metal cations, etc., so that the material exhibits greatly improved capacity of hydrogen absorption and desorption at room temperature and can provide hydrogen storage materials practically adapted for fuel batteries useable even at room temperature.
    Type: Application
    Filed: December 6, 2007
    Publication date: September 29, 2011
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeung Ku Kang, Yoon Jeong Choi, Jung Woo Lee, Jung Hoon Choi
  • Publication number: 20110214723
    Abstract: Provided are a dye-sensitized solar cell and a method for manufacturing the dye-sensitized solar cell using a carbon nanotube (CNx) doped with nitrogen, wherein the dye-sensitized solar cell using the carbon nanotube (CNx) doped with nitrogen has an improved conductivity and open circuit voltage as compared to those using the carbon nanotube (CNT) and also a high connectivity between a transparent electrode and an oxide semiconductor
    Type: Application
    Filed: July 23, 2010
    Publication date: September 8, 2011
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeung-Ku Kang, Ga-In Lee, Weon-Ho Shin, Jae-Joon Lee, Narayan Chandra Deb Nath, Subrata Sarker
  • Patent number: 8012902
    Abstract: Disclosed are partially deactivated metal catalysts useful for modifying structures of nanomaterials. The present invention is also directed to a method for preparing the partially deactivated metal catalysts, which comprises patterning a substrate with micelles containing iron nanoparticles, removing the micelles from the patterned substrate to deposit the iron nanoparticles thereon, nitriding the iron nanoparticles using a nitrogen plasma, and exposing the nitrided iron nanoparticles to a mixture of ethanol and nitric acid to remove iron from the surface of the nitrided nanoparticles. The iron nitride metal catalyst with a nano-size according to the present invention comprises a core that includes deactivated iron nitride and an active shell surrounding the core. Thus, when preparing a carbon nanotube, the metal catalyst can be effectively used to control the number of walls formed in the carbon nanotube.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: September 6, 2011
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung Ku Kang, Kyung Min Choi, Jung Hoon Choi, Saji Augustine, Weon Ho Shin, Seong Ho Yang