Patents by Inventor Jhe-Wei Lin

Jhe-Wei Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458796
    Abstract: The present invention discloses a dual-vortical-flow hybrid rocket engine, including a main body and a nozzle communicating with an end of the main body. The main body includes a plurality of disk-like combustion chambers arranged longitudinally, and a central combustion chamber formed along the axial portion and communicating the disk-like combustion chambers. Each of the disk-like combustion chambers is provided with a plurality of oxidizer injection nozzles at its inner circumference surface. Inside the disk-like combustion chambers, the oxidizer is injected in nearly the tangent directions of the circumference, and the injection directions are opposite for the neighboring disk-like combustion chambers, which creates vortical flows with opposite rotating directions so as to increase the total residence time of the combustion reactions of the oxidizer and the solid-state fuel in the disk-like combustion chambers of the present invention.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: October 4, 2016
    Assignees: National Applied Research Laboratories, National Chiao Tung University
    Inventors: Yen-Sen Chen, Men-Zen Wu, Jong-Shinn Wu, Alfred Lai, Jhe-Wei Lin, Tzu-Hao Chou
  • Publication number: 20140352276
    Abstract: The present invention discloses a dual-vortical-flow hybrid rocket engine, including a main body and a nozzle communicating with an end of the main body. The main body includes a plurality of disk-like combustion chambers arranged longitudinally, and a central combustion chamber formed along the axial portion and communicating the disk-like combustion chambers. Each of the disk-like combustion chambers is provided with a plurality of oxidizer injection nozzles at its inner circumference surface. Inside the disk-like combustion chambers, the oxidizer is injected in nearly the tangent directions of the circumference, and the injection directions are opposite for the neighboring disk-like combustion chambers, which creates vortical flows with opposite rotating directions so as to increase the total residence time of the combustion reactions of the oxidizer and the solid-state fuel in the disk-like combustion chambers of the present invention.
    Type: Application
    Filed: November 4, 2013
    Publication date: December 4, 2014
    Applicants: National Chiao Tung University, National Applied Research Laboratories
    Inventors: Yen-Sen Chen, Men-Zen Wu, Jong-Shinn Wu, Alfred Lai, Jhe-Wei Lin, Tzu-Hao Chou
  • Publication number: 20130005920
    Abstract: A CNT-PI complex primarily includes polyimide (PI) and carbon nanotubes (CNT) dispersed in the polyimide. The method for producing the CNT-PI complex first disperses carbon nanotubes in a solvent by adding a dispersant and using an ultrasonic oscillator. Then the carbon nanotubes dispersion is mixed with polyamic acid to give a CNT-PI dispersion. The CNT-PI dispersion is then dried to form a film or layer of the CNT-PI complex. The dispersant used in this invention is an ionic liquid including organic cations and inorganic anions. The produced CNT-PI complex possesses good electromagnetic shielding effectiveness and presents better networked structures and electrical conductivity.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Wood-Hi Cheng, Yi-Fen Lan, Jin-Chen Chiu, Jhe-Wei Lin, Chia-Ming Chang
  • Publication number: 20110003965
    Abstract: The present invention provides a complex including carbon nanotubes (CNT) and polyimide (PI), and a method for producing the same. The CNT-PI complex possesses good electromagnetic shielding effectiveness. The CNT-PI complex primarily includes polyimide and carbon nanotubes dispersed in the polyimide. The method for producing the CNT-PI complex first disperses carbon nanotubes in a solvent by adding a dispersant and using an ultrasonic oscillator. Then the carbon nanotubes dispersion is mixed with polyamic acid to give a CNT-PI dispersion. The CNT-PI dispersion is then dried to form a film or layer of the CNT-PI complex. The dispersant used in this invention is an ionic liquid including organic cations and inorganic anions. The produced CNT-PI complex presents better networked structures and electrical conductivity.
    Type: Application
    Filed: June 29, 2010
    Publication date: January 6, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Wood-Hi Cheng, Yi-Fen Lan, Jin-Chen Chiu, Jhe-Wei Lin, Chia-Ming Chang