Patents by Inventor Ji-bin Yang

Ji-bin Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150343532
    Abstract: A porous aluminum body having high porosity and a manufacturing method therefor are provided, wherein the porous aluminum body can be manufactured by continuous manufacturing steps. In the present invention, this porous aluminum body includes a plurality of aluminum fibers connected to each other. The aluminum fibers each have a plurality of columnar protrusions formed at intervals on an outer peripheral surface of the aluminum fibers, the columnar protrusions protruding outward from the outer peripheral surface. Adjacent aluminum fibers are integrated with the aluminum fibers and the columnar protrusions.
    Type: Application
    Filed: December 9, 2013
    Publication date: December 3, 2015
    Applicant: MITSUBISHI MATERIALS CORPORTION
    Inventors: Ji-Bin Yang, Koji Hoshino, Toshihiko Saiwai
  • Publication number: 20150078949
    Abstract: This method for producing porous sintered aluminum Includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm?10 (° C.)?T?685 (° C.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Koji Hoshino, Ji-bin Yang, Kenji Orito, Shinichi Ohmori
  • Patent number: 8691328
    Abstract: This method for producing an aluminum composite including porous sintered aluminum, includes: mixing aluminum powder with a sintering aid powder containing either one or both of titanium and titanium hydride to obtain a raw aluminum mixed powder; adding and mixing a water-soluble resin binder, water, a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters, and a water-insoluble hydrocarbon-based organic solvent containing five to eight carbon atoms into the raw aluminum mixed powder to obtain a viscous composition; shape-forming the viscous composition on an aluminum foil or an aluminum plate and causing the viscous composition to foam to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere to obtain an aluminum composite which includes porous sintered aluminum integrally joined onto the aluminum foil or the aluminum plate, wherein when a temperature at which the raw aluminum mixed powder starts to melt is
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 8, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Ji-bin Yang, Koji Hoshino, Kenji Orito, Hitoshi Maruyama
  • Publication number: 20120135142
    Abstract: This method for producing an aluminum composite including porous sintered aluminum, includes: mixing aluminum powder with a sintering aid powder containing either one or both of titanium and titanium hydride to obtain a raw aluminum mixed powder; adding and mixing a water-soluble resin binder, water, a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters, and a water-insoluble hydrocarbon-based organic solvent containing five to eight carbon atoms into the raw aluminum mixed powder to obtain a viscous composition; shape-forming the viscous composition on an aluminum foil or an aluminum plate and causing the viscous composition to foam to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere to obtain an aluminum composite which includes porous sintered aluminum integrally joined onto the aluminum foil or the aluminum plate, wherein when a temperature at which the raw aluminum mixed powder starts to melt is
    Type: Application
    Filed: March 30, 2010
    Publication date: May 31, 2012
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Ji-bin Yang, Koji Hoshino, Kenji Orito, Hitoshi Maruyama
  • Publication number: 20120107166
    Abstract: This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm?10 (° C.)?T?685 (° C.).
    Type: Application
    Filed: March 30, 2010
    Publication date: May 3, 2012
    Applicant: Mitsubishi Materials Corporation
    Inventors: Koji Hoshino, Ji-bin Yang, Kenji Orito, Shinichi Ohmori
  • Publication number: 20120094142
    Abstract: This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing a sintering aid element to obtain a raw aluminum mixed powder; forming the raw aluminum mixed powder into a formed object prior to sintering having pores; and heating the formed object prior to sintering in a non-oxidizing atmosphere to produce porous sintered aluminum, wherein the sintering aid element is titanium, and when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), then a temperature T (° C.) of the heating fulfills Tm-10 (° C.)?T?685 (° C.).
    Type: Application
    Filed: March 30, 2010
    Publication date: April 19, 2012
    Applicant: Mitsubishi Materials Corporation
    Inventors: Koji Hoshino, Ji-Bin Yang, Kenji Orito, Shinichi Ohmori
  • Patent number: 7615094
    Abstract: A first tungsten-based sintered material of the present invention comprises Ni in a range from 0.2 to 1.5% by mass, Y2O3 in a range from 0.1 to 1% by mass, and optionally, (a) VC in a range from 0.05 to 0.5% by mass and/or (b) Co and/or Fe in a range from 0.01 to 5% by mass, the balance being tungsten (W); W phases are sinter-bonded; Ni phase or Ni—Co/Fe alloy phase which has the largest particle diameter of 5 ?m or less and Y2O3 having the largest particle diameter of 5 ?m or less are distributed at boundaries of the W phases; and the largest particle diameter of the W phase is 30 ?m or less. The first tungsten-based sintered material is preferably used for a hot press mold for optical glass lenses.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: November 10, 2009
    Assignee: Mitsubishi Materials C.M.I. Corporation
    Inventors: Ji-bin Yang, Masato Otsuki
  • Publication number: 20070169586
    Abstract: A first tungsten-based sintered material of the present invention comprises Ni in a range from 0.2 to 1.5% by mass, Y2O3 in a range from 0.1 to 1% by mass, and optionally, (a) VC in a range from 0.05 to 0.5% by mass and/or (b) Co and/or Fe in a range from 0.01 to 5% by mass, the balance being tungsten (W); W phases are sinter-bonded; Ni phase or Ni—Co/Fe alloy phase which has the largest particle diameter of 5 ?m or less and Y2O3 having the largest particle diameter of 5 ?m or less are distributed at boundaries of the W phases; and the largest particle diameter of the W phase is 30 ?m or less. The first tungsten-based sintered material is preferably used for a hot press mold for optical glass lenses.
    Type: Application
    Filed: July 13, 2004
    Publication date: July 26, 2007
    Applicant: Mitsubishi Materisla C.M.I. Corporation
    Inventors: Ji-bin Yang, Masato Otsuki
  • Patent number: 6296682
    Abstract: The object of the present invention is to provide an iron based blended powder for powder metallurgy that can provide a reformable sintered article that has a good sliding property with less variation in the property and a good impact resistance. More specifically, the iron based blended powder for powder metallurgy is formed by blending an atomized alloy iron powder with 0.01% to 1.0% of one or more types of compound powder containing B in terms of B, 1 to 10% of Ni powder, 1 to 6% of Cu powder, 1.3 to 3.0% of graphite powder by weight %, as well as 0.5 to 2.0 parts by weight of a lubricant with respect to 100 parts by weight of the total weight of said powder. The iron based blended powder for powder metallurgy wherein the atomized alloy iron powder comprises, by weight %, 0.03 to 1.00% of Mn, 0.5 to 4.0% of Cr, 0.03 to 0.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: October 2, 2001
    Assignees: Kawasaki Steel Corporation, Mitsubishi Materials Corporation
    Inventors: Satoshi Uenosono, Ji-bin Yang
  • Patent number: 5585574
    Abstract: A shaft having a magnetostrictive sensor measures torque applied to a shaft, as a shaft, without contact and utilizing reverse-magnetostrictive properties of magnetic alloys. The shaft includes a plurality of magnetic alloy layers, and the magnetosensitive torque detector is variously formed by diffusion bonding a magnetostrictive layer with a high magnetostrictive constant onto the shaft surface, by heat treating, adhesive fixation or the like bonding means. Methods for making the shaft are disclosed.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: December 17, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Tadashi Sugihara, Kazushi Yoshida, Kazutoshi Inoue, Ji-bin Yang, Isao Suzuki